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1 IntrodutionNatural language, whether spoken or typed, is an emerging meansof interating fruitfully with omputer systems. The ability to or-der movie tikets or �nd out diretions over the telephone using voiereognition tehnology, to name two examples, is emerging as main-stream tehnology. At the same time, more and more sophistiatedsemi-autonomous omputer ontrolled agents/devies are in develop-ment or have been developed. For example, mobile robots have be-ome partiularly robust with regard to low-level issues like loaliza-tion and obstale avoidane [KBM98℄; moreover, mobile robots havestarted to beome extremely heap, osting just a few thousand dol-lars, and are widely available [at℄. One of the original suh devieswas built by the FLAKEY projet at SRI (see, eg [SKR95℄), whih pro-dued a semi-autonomous oÆe robot that ould navigate through anoÆe to do tasks suh as delivering items. Current work inludes theWITAS projet [DGK+00℄ whih endeavors to reate an autonomousheliopter { an unmanned aerial vehile { apable of planning eÆientroutes, identifying objets on the ground, and following moving ob-jets. In addition, NASA is developing a Personal Satellite Assistant(PSA) that moves autonomously about the shuttle or the spae stationto assist the rew [RHJ00℄. And the long-running Honda humanoidrobot projet is developing a humanoid robot named ASIMO that annavigate the home and perform simple hores [hon℄.Related projets are those involved in dialogue-enabling existingdevies in the home, oÆe, and automobile. The aim is to allowhumans to ontrol devies like telephones, televisions, radios, d play-ers, and VCRs with spoken natural language. Suh projets are be-ing pursued, for example, at Telia [LRGB01℄, COLLAGEN [RSL01℄,Bosh and SmartKom [LBPA02℄. These groups hope to build naturallanguage interfaes whih an be integrated into existing tehnology,rather than devies whih are still under development. By doing so,they hope to hange the way that humans interat with eletronidevies by making it easier for humans to interat with them usingnatural, spoken language.Running the gamut from the more intelligent devies to the rel-atively \dumb" devies is the idea that these devies are engaged inativities in a dynami environment. These devies, to one extentor another, make plans for ation and then exeute them { whether5



it be a plan to follow a ar in the ase of the WITAS projet, or aplan about how to set the time of the VCR in COLLAGEN. More-over, for eah ativity there may be many parameters that need tobe spei�ed by the human operator, inferred by the system, or evenrandomly hosen. For instane: a heliopter needs to know where togo, at whih altitude and speed to y, and possibly even myriad otheright parameters like pith, yaw, or roll; a VCR should know whattime to begin taping a show, when to end, what hannel it's on, andat what quality to reord; and a humanoid robot might need to un-derstand how areful to be, the volume at whih to speak, or at whatspeed to move. The point of natural-language enabling these deviesshould be to make them easier to ontrol. By produing language,they should be able to e�etively ommuniate their urrent state tothe human operator in terms whih will make sense to the human,negotiate with the operator about the values of parameters, and an-swer questions about their state in a natural manner. Similarly, byunderstanding language, they should be able to give the operator themeans to easily modify their state or enquire further about its detailsin a natural manner. Moreover, language should allow them to beproative in a natural way: they should initiate information-seekingor lari�ation dialogues when neessary, without foring the user tonavigate omplex menu systems on a sreen or understand how towrite programming ode. Finally, they should be able to partiipatenaturally in joint ativities (see [Cla96℄) in whih both the human op-erator and the intelligent devie ollaborate in order to bring about adesired outome. These ativities provide and importane ontext bywhih utteranes in a onversation should be understood.Most or all of these advantages that arise from using natural lan-guage are desirable aross a wide range of devies. Moreover, manyof these advantages don't arise from the underlying intelligene of thedevie itself; rather, they ome from a di�erent sort of intelligene:Conversational Intelligene (CI) [LGP02℄. Conversational Intelligeneis knowledge about how and why onversations our between agents,and how to e�etively partiipate in onversations. While it's truethat without an underlying intelligene, it's diÆult to have an inter-esting onversation about anything very interesting, it's not the asethat with knowledge and intelligene ome the ability to ommuniatee�etively. Some knowledge, inluding for example knowledge aboutwhen it's appropriate to speak, how and when to interrupt someonewho is speaking, how the ontext provided by past utteranes should6



be used to interpret new ones, and when it's important to mentionpartiular hanges in the state of the world are just a few examples ofConversational Intelligene.The projet disussed in this paper revolves around the intertwinedgoals of atually de�ning what's involved in CI and implementingsuh knowledge using a omputational system in a devie-independent,modular manner. Spei�ally, introdued here is a devie-independentarhiteture for building an interfae to the CSLI Dialogue Manager[LGP02℄ suh that its onversational front-end an be quikly andeasily interfaed to a wide-range of devies. Moreover, this interfaewas designed to provide its own onversationally intelligent meha-nisms whih may be harnessed by the dialogue manager in supportof more omplex, yet natural dialogues with the devies. For exam-ple, devie-independent support is provided for onstraint dialoguesin whih natural language is used to restrit and expand the permis-sible sets of values of the parameters on partiular ativities de�nedby a devie (see setion 7). Suh dialogues allow human operatorsto hange the overarhing parameters whih ontrol a devie in anintuitive and smooth manner.In setion 2, will disuss previous and urrent work in dialoguesystems that is relevant to the projet at hand, fousing mainly onthose that deal with either ommanding devies or oordinating a-tions of human agents. I will also study some of the theories that haveemerged regarding how rational agents operate and ommuniate, asthese theories shed light on how, why, and when a rational agentshould ommuniate. Next, I will look at intelligent devies that haveatually been designed, and the sorts of onstruts whih have beenused to ontrol them. I will then note the importane of auratelyommuniating the state of these devies to the human operator, sothat mode onfusion an be avoided.In setion 3, I will then show how my projet is relevant to thisresearh, and how it naturally extends muh of the work. Then, I'lldelve into the depths of the projet. In setion 4, I'll present theformalism of the Ativity Tree, developed to represent that urrentstate of the agent or devie with whih the operator is ommuniat-ing. In setions 5 and 6, I'll disuss the speial language I've reatedto interfae devies to dialogue systems. Then in setion 7, I'll disussthe onstraint management system developed as part of this projet,whih ranges over the ativity representation developed in the previ-ous setions. Finally, in setion 8, I'll disuss how the formalism is7



implemented and the interfae between the dialogue system and thedevie is ahieved. There, I'll give a brief desription of the funtion-ing of the CSLI Dialogue Manager; though it is important to notethat the arhiteture I've implemented here ould be extended to �tin with other dialogue managers, built on di�erent theoretial under-pinnings. The point of my projet is not to manage the intriaiesof spoken-language dialogue, but to provide resoures by whih a dia-logue manager an failitate meaningful dialogue with a wide-range ofdevies. I will develop algorithms by whih a dialogue manager shouldinterat with the failities disussed in this paper.2 Previous and Current WorkIn this setion, I will delve into several areas of researh in order tohighlight the myriad useful ideas that have emerged, as well as toshow where this researh needs extension and implementation. Thisbakground will show how the framework disussed in this paper �tsinto large areas of researh.2.1 Dialogue SystemsThere is a wide range of dialogue systems that have been ommeriallydeployed, have been developed for researh purposes, are urrently be-ing developed, or are planned to be developed aording to theoretialwork in progress. Suh systems range in omplexity depending on thediÆulty of the problem for whih they are designed. I'll disuss herea range of suh systems and the tasks for whih they have been de-signed; a useful and often parallel disussion of the range of developeddialogue systems appears in [ABD+01℄.2.1.1 Slot/Form-Filling Dialogue SystemsThere has been a large amount of work on so alled slot-�lling dialoguesystems. Suh dialogue systems are useful in domains where ertainbits of information need to be eliited from the user, resulting in aset of slots being �lled, whih are usually used to make a databasequery or update. For instane, when designing an automated airlinereservation system, dialogue designers have often thought in terms ofthe spei� bits of information that the user must supply in order forthe system to do a database searh for available ights that math8



this set of riteria. Suh a system might have the following slots thatneed to be �lled, where for eah there is a domain of allowable values:� The departure ity� The arrival ity� Date on whih to travel� Time at whih to travelIn order to �ll in these slots, dialogue systems generally use someombination of user initiative and system initiative (a ombination re-ferred to as mixed-initiative). This means that the user may providethe values for some subset of the slots in a single utterane and thenthe dialogue system an ask follow up question to eliit the rest ofthe required information. This stands in opposition to earlier �nite-state dialogue systems, whih required that a series of questions beasked and answered in a spei� order so that all of the slots mightbe �lled in. For example, slot-�lling dialogue systems an often un-derstand utteranes like I'd like to y from San Franiso to Londonwhih provide some of the neessary information required to makean airline reservation, but not all of it. The system will follow upwith information-seeking questions when the user fails to �ll in all theneessary slots. For example, in response to the above utterane, asystem might respond with Okay. When would you like to depart?.In the most straightforward instantiations of suh systems, thehuman user must �ll all of the slots before proeeding { though theslots may be �lled in any order. Suh an arhiteture has been used tobuild, for example, airline reservation systems (e.g. [SP00℄) and traintimetable systems (e.g. [SdOB99℄). It has also been ommerialized byompanies like Nuane and Tellme who build ustomized appliationsfor lients like banks, telephone ompanies, and airlines.Form-�lling dialogue systems, then, oneptualize information-seekingdialogue in terms of a mapping from user-utteranes to values for slots.One the requisite slots are �lled, the system an take some sort ofation { for instane, making an airline reservation [SP00℄. Conversa-tional Intelligene is demonstrated to the extent that it has a strategyfor eliiting information that the bak-end of the system needs fromthe user in order to take some ation. It is lear, however, that a sim-ple form-�lling model is not suÆient for ontrolling intelligent agentsin omplex environments: there is no mehanism, for instane, to an-swer questions about the state of the devie, or why the devie is doing9



a partiular ation, sine these things are not modeled. On the otherhand, form-�lling provides a good model for a means of obtaining val-ues for a set of parameters, whih is highly relevant to some aspetsof ontrolling intelligent devies.2.1.2 Pratial Dialogue SystemsIn [ABD+01℄ the authors identify a type of dialogue whih they referto as pratial dialogue. They de�ne pratial dialogue as dialoguewhih \may involve exeuting and monitoring operations in a dynam-ially hanging world" ([ABD+01℄:3). As opposed to the types ofdialogue systems disussed in the previous setion, dialogue systemswhih are designed to work at suh a level generally failitate inter-ation with devies in a real-world or simulated environment, withthe goal of aomplishing some spei� task (in ontrast to simplydoing a database lookup, for example). Allen, et al, laim that whilesuh dialogues are omplex, they don't require full-human ompeteneto understand and partiipate in. Indeed, it is apparent that a sys-tem designed to handle suh dialogues ould probably funtion prettywell without understanding how a metaphor, for example, funtionsin language.There are many urrent researh projets whih are involved intrying to build dialogue systems whih funtion at this \pratial"level. Many of them are trying to dialogue-enable existing deviesin the home, oÆe, and/or automobile (e.g. [LRGB01℄, [LBPA02℄,[RSL01℄). Suh projets often are pursuing fruitful ways to endowapabilities like lari�ation sub-dialogues and anaphora resolutionaross a diverse set of devies. For example, suh systems try togenerially enable dialogues like the following:(1) a. O: Turn on the light.S: Whih light should I turn on?O: The one in the kithen.S: The light in the kithen is now on.b. O: Is the light in the kithen on?S: Yes.O: Turn it o�.S: The light in the kithen is now o�.In the above dialogue, the lights are referred to with anaphori ex-pressions suh as the one in the kithen and Turn it o� { an ability10



above and beyond that supplied by the simpler form-�lling dialogues.Moreover, rather than simply doing stati-database queries and re-porting the results, the dialogue system must be able to monitor aworld in whih the dialogue may ause hanges (here, the lights turno� and on). Suh dialogue systems must arry with them some no-tion of how the devies they ontrol operate { they must understandthat eletroni devies an be turned on and o�, radios an be turnedto a partiular station and only dimmable lights an be dimmed topartiular intensities. In order to address these issues, in [LRGB01℄for example, a plug-and-play system is designed in whih new devieswith new apabilities an be added to the system easily by loadingin the linguisti resoures for ontrolling and querying a devie, theabilities of the devie, and the ode used to interfae to the devie onthe y.In this domain, it is evident that the Conversational Intelligeneof the devie an begin to be separated from its funtion. By separat-ing linguisti and ontologial knowledge so that both an be appliedaross many similar devies in order to enable dialogue phenomenalike anaphora resolution and lari�ation sub-dialogues, and in orderto apture ommonalities like the fat that eletroni devies may beturned on and o�, researhers reate generi dialogue systems whihan be used to ontrol diverse sets of devies.Perhaps a step up in omplexity from suh \dumb" devies areprojets that are onerned spei�ally with dialogue-enabling themore intelligent devies that are under development for the future.At NASA, for example, a dialogue system has been reated for thePersonal Satellite Assistant (PSA) under development there [RHJ00℄,a small mobile robot for use in the spae station. The dialogue man-ager gives astronauts a means of giving orders to the PSA suh asMeasure the temperature at the aptain's seat and allows the PSA todisambiguate orders suh as Open the hath when there are multiplehathes. While the projet has produed a workable dialogue man-ager, no general results have been reported about the sorts of deviesthat the dialogue manager would be able to ontrol, or even if it wouldbe able to ontrol devies besides the PSA.At CSLI, I am involved as part of the Computational Seman-tis Lab in the WITAS projet [LGP02℄, whih has as its goal todialogue-enable an autonomous heliopter urrently under develop-ment [DGK+00℄. In order to dialogue enable this devie, we havesought to de�ne what knowledge onstitutes the onversational intel-11



ligene that is needed by a wide-range of task-oriented autonomousdevies in order to e�etively ommuniate. This paper will desribethe interfae to the robot heliopter that the dialogue manager beingdeveloped at CSLI uses in order to behave with onversational intel-ligene in suh areas as: when to make an utterane, when to ask aquestion, how to set devies' parameters, and so on. It is our aimto make a generi dialogue system that an be straightforwardly spe-ialized to dialogue-enable the large range of autonomous devies thatmay be developed in the future whih might be quite di�erent fromthe heliopter with whih we are urrently working.As was touhed on briey in setion 2.1.1, dialogue systems forontrolling suh devies are inherently more omplex than form-�llingdialogue systems beause they must model, to some extent or another,the state of the world. Spei�ally, they must be able to model theurrent joint ativities in whih the intelligent agent and the humanare involved.2.2 Rational Agents and Plan ReognitionIn order for a dialogue system to work with intelligent devies, it mustbe apable of understanding the sorts of plans that a user wishes toarry out with the devie. There has been a large amount of researhinto understanding how rational agents (suh as humans) oneptu-alize plans and ommuniate about them. This has bearing on theprojet at hand, both beause the dialogue system ought to be able tofailitate the understanding of the intentions of the human operatorand beause it should be able to ommuniate the plans formed bythe devie to the human; if the ations of the intelligent devie are tobe understood as rational by the human operator, then the dialoguemanager must be able to oherently ommuniate them to the humanin terms that will make sense to him or her. Inferring the plans ofrational agents based on what and how they ommuniate is alledplan reognition.Critial to understanding what it means to have a plan is a dis-tintion drawn in [Pol90℄. Here, Pollak makes a ruial distintionbetween plans and reipes: a reipe-for-ation is a reipe by whihrational agents formulate plans, and a plan is an instantiation of apartiular reipe-for-ation. A plan is part of omplex mental stateof a onversational agent, whereas a reipe is a more abstrat notion{ it omposes part of the reipe library from whih an agent might12



hoose a reipe to instantiate into an atual plan in a partiular situ-ation. When an agent wishes to ahieve a goal, he/she/it instantiatesa reipe into a plan by whih the goal may be ahieved.A plan desribes a means of aomplishing a goal or ompletingan ation. It does this by de�ning a set of steps { steps may appearin sequene to one another, and sets of steps may reursively be sub-steps of a di�erent step. In [Bra90℄, Bratman points out that theability to break up a plan into sub-plans, and still further into smallersteps, is a pragmati one beause suh subdivisions allow the agentto defer planning the details of a sub-plan until later, when the stateof the world may have hanged in unexpeted ways foring the agentto disard or replae the sub-plan. In [Pol90℄ and further eshedout in [ASF+95℄ is a partiular notion of the di�erent ways in whihsteps in a plan an stand in relation to one another. In partiular,the relationships given below are de�ned. I've added question-answerpairs to eah relation whih are meant to illustrate the relations:1. A�et: ation to stateQ: Why are you ying to the tower?A: In order to be at the tower.2. Enablement: state to ationQ: Why do you want to be at the tower?A: So I an drop medial supplies there.3. Generation: event to event (illustrated with the by loution)Q: How will you put out the �re at the shool?A: I will put out the �re at the shool by ying to the lake,piking up water there, ying to the shool, and dropping thewater on the �re there.4. Justi�ation: state to stateQ: Why do you have to be at the tower?A: Beause you want medial supplies there.While this de�nes the relationship between partiular segments ofa plan it does not de�ne preisely the notion of what it means fora onversational agent to have a plan. Pollak (in [Pol90℄) gives thefollowing de�nition: An agent A has a plan to do � that onsists indoing some set of ats �, providing that:1. A believes that he an exeute eah at in �.2. A believes that exeuting the ats in � will entail the perfor-mane of �. 13



3. A believes that eah at in � plays a role in his plan.4. A intends to exeute eah at in �.5. A intends to exeute � as a way of doing �.6. A intends eah at in � to play a role in his plan.The fat that agents have plans whih they talk about, even thoughthese plans are not atually plans to ommuniate, is an importantdistintion made by researhers who have sought to desribe ways todo plan reognition. For instane, in [LA90℄, the authors de�ne do-main plans as plans whih might be performed in a partiular domain,and desribe those plans in a STRIPS-style formalism. The notion ofagents \having plans" and ollaborating with one another about themis also developed by Groz, Sidner, and others in a number of papers(for example: [GS90℄, [GK96℄, [GK98℄). The result of their researh isthe de�nition of a SharedPlan. SharedPlans an be used to de�ne theplans that rational agents make with one another; indeed, they anbe used to determine when agents have suessfully ommuniated toone another that they intend a partiular plan.Attempts have been made to apply the SharedPlan Model to dia-logue systems (e.g. [Lo94℄). Most reently, this has been done by theSidner's COLLAGEN projet (overview in [RSL01℄). In partiular, itis applied mainly to tutorial dialogues in whih the omputer helpsthe human user to get through a series of steps involved in operat-ing a devie ([RLR+02℄) { for example, programming a VCR. WhileCOLLAGEN purports to use a SharedPlan model { COLLAGEN isreally only a partial implementation of the SharedPlan arhiteture atthe moment. Indeed, while SharedPlan a�ords a relatively omplexmeans of de�ning the relationships among the parts of an instanti-ated plan, the reipe-trees in COLLAGEN are not nearly so rih; theyonsist mainly of ations whih have been hierarhially deomposed.Moreover, this appliation is foused not on ontrolling autonomousdevies in dynami environments, but on helping human users on-trol relatively simple eletroni devies. As suh, while COLLAGENis helpful to our purposes in that it helps us to understand one wayin whih plans for ation have been modeled, the types of plans it isapable of modeling are not as omplex as those that more omplexdevies atually form, as will be disussed below.Plan reognition has also been used by dialogue systems { espe-ially in the TRAINS (and subsequently TRIPS) system at the Uni-versity of Rohester. The most reent work on plan reognition from14



that projet is desribed in [Bla01℄. The plan reognition system isfoused mainly on inferring user plans either bottom up (ations �rst)or top down (goals �rst), and it has been reently enhaned to modelsynergies that an arise from plans being interleaved. Interleaved plansare those in whih one ation is part of several plans.As a �nal note, I'd like to draw attention to the fat that in[TA94℄, the authors disuss an important distintion that an bedrawn among the ways that a plan (or sub-plan) an ulminate \su-essfully." Spei�ally, three results may be obtained:� Suessful Completion (all ations performed and goal met)� Ation Completion (all ations performed)� Goal Satisfation (goals ahieved)We an onsider the three ases by looking at an example: onsiderthat I have the goal to have a lean kithen oor and my plan toahieve this goal is to �rst sweep the oor and then mop it. In the�rst ase, I go ahead and sweep the oor and then mop it and the oorbeomes lean { I've done all the ations in my plan and ahieved mygoal. In the seond ase, suppose that I sweep the oor and then mopit, but there's a tough stain that just won't ome out; in this ase,I've performed all of the ations in my plan, but my goal of having alean kithen oor doesn't obtain. Finally, suppose that I �rst sweepthe oor, and then I go to the other room to look for the mop whereI'm delayed by an important phone all. In the meantime, Joe notiesthat the kithen oor needs a bit of leaning, and so he takes a ragand leans it by hand. When I return with the mop, I disover thatthe oor is lean even though I didn't have to mop it (and, indeed,nobody atually mopped it) { in this ase, my goal has been ahievedeven though I didn't omplete all of the ations in my plan.This distintion is an important one, beause it is often the asewhen people give ommands that they don't often are about how agoal is aomplished, but just that it is aomplished in one way oranother. On the other hand, sometimes it matters a great deal theexat way in whih a goal is aomplished.2.3 Mobile Robot Control SystemsHere, I'll onsider one formalism for ontrolling mobile robots whihhas atually been �elded in many systems, and is now embodiedin software whih is shipped with many mobile robots in order to15



ontrol them: PRS-LITE (see, e.g., [Mye96℄). PRS-LITE is a re-implementation of SRI's Proedural Reasoning System (PRS) formal-ism streamlined for ontrolling mobile robots. It is now realized in theCOLBERT programming language, whih is part of the Saphira sys-tem, written at SRI and distributed now by AtivMedia Robotis withthe robots it sells. If we see robots as representing rational agents, thenwe should be able to view PRS-LITE as a formalism used to atuallyrepresent the robot's plans for ation { as suh, we an ome to under-stand the \mental representation" that many robots urrently use inorder to \have a plan." This \mental representation" has been drivenby the need to e�etively and eÆiently ontrol mobile robots, ratherthan any theoretial underpinnings of how a rational agent ought tobehave, as the above planning formalisms have attempted to do. Un-derstanding this is ritial to my projet, beause if humans are tointerat with intelligent devies as though they are rational agents,then we must be able to �nd a way to mesh the types of represen-tations that humans use and the ones that are ommon to robots, ifthe agents have any hope of e�etively ommuniating. Indeed, myprojet an be seen in terms of reating a layer by whih humans androbots an interpret the intentions behind the ations and ommu-niative attempts of one another.PRS-LITE attempts to support the following harateristis whihthe authors of [Mye96℄ assert are requisite for ontrolling suh mobilerobots:1. Both disrete and ontinuous proesses2. Conurrent ativities3. Both goal-driven and event-driven operation4. An external observer should be able to understand the intentunderlying the robot's ation.In addition, the authors de�ne goal semantis whih support atomiand ontinuous proesses { that is, ones whih an be used as sequen-tial building bloks and ones whih run as ongoing proesses, withoutpartiular goals.The representational basis that PRS-LITE uses is alled an ativityshema. Where an ativity shema is deomposed as follows:� It is an ordered list of goal-sets� where a goal set is one or more goal statements (\goals") in anordered sequene 16



� where a goal is a goal operator applied to a list of argumentsGoals an be deomposed hierarhially. Spei�ally, Goals are ei-ther Ation Goals (Test, Exeute, =, Wait-for, Intend, Unintend) orSequene Goals (If, And, Split, Goto).The end result is that goals are not simply hierarhially deom-posed, rather, a hierarhially deomposed goal an also give rise (viasplit) to other trees { yielding a forest of ations whih are urrentlybeing exeuted by the robot. Also, the If and Goto allow for theability to skip over ertain steps. This allows for a large amount ofexibility in the relationship between proesses; however it makes itdiÆult for an external observer to understand the intent of the au-tonomous system. The instantiated \plan" that the system has at anyone moment is simply a set of ativities, some of whih stand in anativity-sub-ativity relationship and some of whih are onurrent.There is little expliit explanation of exatly how and why the set ofativities the system is running at any one time are linked together.In typial PRS-LITE systems, there are many onurrent goalsbeing pursued at any one time. Indeed, not only are there manyonurrent tasks, but the relationships between these tasks are oftenabstruse. Global variables an be shared between tasks, and sometasks will wait for other tasks to set partiular variables before theyproeed. Given suh a omplex network, it is often diÆult for peoplewho monitor the system to understand exatly what the system isdoing, what it intends to do, and why.2.4 Mode Confusion in Complex SystemsResearh into human understanding of omplex software systems hasontributed some useful insights to modeling ativities as well. In[Lev00℄, the point is made that when ativities are deomposed intosmaller hunks, at eah level of the hierarhy there an be observedemergent harateristis. On page 6, emergene is de�ned as follows:\Emergene { at any given level of omplexity, someproperties harateristi of that level (emergent at thatlevel) are irreduible. Suh properties do not exist at lowerlevels in the sense that they are meaningless in the lan-guage appropriate to those levels. For example, the shapeof an apple, although eventually explainable in terms ofthe ells of the apple, has no meaning at that lower level of17



desription."A similar sort of example an be found in the mobile robot domainif we onsider the task of patrol { whih, in its simplist form, onsistsof going bak and forth between two points. At the lower level of goto,there is no way to explain the onept of patrol.In [BL01℄ the authors note how important for safety it is thathumans have a good understanding of how automated proesses work.They reate a graphial language for reating this representation. Toquote: \A ontroller (automati, human, or joint ontrol) ofa omplex system must have a model of the general be-havior of the ontrolled proess....If an operator's mentalmodel diverges from the atual state of the ontrolled pro-ess/automation suite, erroneous ontrol ommands basedon that inorret model an lead to an aident."The authors also assert that one of the major fators that leads to anoperator/mahine mismath is lak of appropriate feedbak, espeiallywhen this feedbak is needed to ommuniate unintended side e�ets.As suh, they indiate when it is important for a semi-autonomous,omplex devie to ommuniate when its state has hanged. It isimportant both that the human understand the urrent state of thedevie in terms that make sense to the human, and that these termsare somehow translatable into language the devie understands.2.5 Plug-and-Play Devies and Dialogue Sys-temsIn [LRGB01℄ the authors disuss the development of a dialogue sys-tem for ontrolling devies in the home. A ompelling feature of thissystem is that devies an be plugged in \on the y" { their apa-bilities and a grammar for disussing these apabilities an be addeddynamially to the dialogue manager. For instane, when a dimmablelight swith is added to the system, an devie model desribing thedimmability of the swith is dynamially added to the system and agrammar that allows for utteranes suh as Dim the light to �fty per-ent is added. Three hierarhies exist in whih the devie must beplaed:1. The linguisti resoures needed to query and ontrol devies18



2. The funtionalities the devies implement3. The ode needed to ontrol the deviesThe goals of the system are exatly the same sort of goals pursuedby the projet desribed in this paper: plugability of devies into a di-alogue system. However, while they have made a good start, they lakdevie models and desriptions for omplex ations { while they anturn lights on and o�, they wouldn't be able to ontrol a mobile robotin a dynami environment very easily, for example. The system theyhave built mostly deals with single utteranes like \Turn on the lightin the kithen" whih result in nearly instantaneous ations. In orderto have more omplex dialogues with more omplex devies, ationsthat have duration must be onsidered, as well as ations whih ouronurrently. Spei�ally, the relationship among these onurrentlyexeuting ations will be relevant to the dialogue at hand.3 Projet OutlineI have disussed above some of the researh in several �elds that isrelevant to my projet. There has been muh fruitful work done onenabling dialogue systems to understand how humans ommuniateabout plans they have formed. This work should serve as a basis forenabling intelligent devies to understand what it is the human oper-ator wants it to do, and how it should be done. At the same time,while there has been muh work in developing powerful ontrol sys-tems for autonomous devies, espeially mobile robots, there remainsmuh work to be done regarding how best to ommuniate about theations of the devies whih are arried out by devies so ontrolled.Indeed, there is a body of researh that indiates that it is ritialthat human operators be able to understand the urrent \mode" ofomplex systems (here, the omplex system in question is the intelli-gent devie). Moreover, there has not been work on how to e�etivelyonvey a human user's beliefs about a plan to an intelligent devie,in terms that it an understand; that is, there is a spei� problemof onverting from one rational agent's mental state representation ofa plan to another's. Finally, there has been little investigation intohow natural language an be used to make suh ommuniation moree�etive, suh that mode onfusion an be avoided, and the possiblymany parameters involved in any one of a devie's ativities an beontrolled simply and naturally. 19



This paper fouses on designing mehanisms for designing a lassof dialogue systems for task-oriented dialogues, a spei� subset of therange of \pratial" dialogues disussed above. A task-oriented dia-logue is one whih is \foused on aomplishing a onrete task" { thatis, it is a dialogue about aomplishing some spei� task or tasks in areal or simulated environment. Allen, et al, hypothesize in [ABD+01℄that general-purpose tools an be built for enabling dialogue manage-ment over the set of pratial dialogues. Spei�ally, they formulatethe Domain-Independene Hypothesis:\Within the genre of pratial dialogue, the bulk ofthe omplexity in the language interpretation and dialoguemanagement is independent of the task being performed."This laim both motivates the work desribed in this paper, and it issupported by the end result.The two major goals of the projet desribed here were derivedfrom the exploitation of this hypothesis. Spei�ally, they are:1. To reate a sripting language similar in spirit to PRS-LITEwhih is powerful enough to ontrol autonomous agents at a highlevel, but with speial features making it partiularly suitablefor ommuniating in natural language about ativities the de-vie is urrently engaged in, has ompleted, and should do in thefuture. Moreover, this language should support joint-ativitieswhih involve ooperation between the human operator and theintelligent devie, an area often overlooked by robot program-mers. This language should lead to a perspiuous run-time rep-resentation of the joint-ativities in whih the human and devieare involved, suh that this representation may be used as on-text to better understand and produe utteranes related to theativities being performed.2. To exploit features of natural language suh that ontrolling in-telligent devies is easier or more natural when they are dialogueenabled, as ompared to ontrolling them with a GUI or a om-mand line interfae.In addressing the �rst issue, I will introdue the notion of the A-tivity Tree as a means of traking and modifying the status of multipleonurrent ativities. In addition, I will disuss a partiular represen-tation of Ativities I've developed. The representation allows the dia-logue system to both talk about ativities and understand utteranes20



that pertain to ativities and their parameters. Moreover, it allowsthe dialogue manager to answer questions about why spei� ativitiesare urrently being done or being planned. I will introdue a reipesripting language that shares many features with PRS-LITE, but isdesigned to make ommuniating about ativities straightforward.In addressing the seond issue of exploiting natural language, I willdisuss many issues. My fous, however, will be a mehanism I've de-veloped for speifying onstraints over ativities (for instane, \alwaysy high"). I will desribe a system that allows the human operatorto naturally speify and modify relatively omplex onstraints usingnatural language and then ensures that these onstraints are adheredto. In addition, this system detets a wide-range of impliatures inorder to ensure that the onstraint set remains oherent, even whenthe user only impliitly removes onstraints from the set and replaesthem with new ones. It is my belief that suh onstraints are expressedeasily in natural language, while they are diÆult to ommuniate viaa graphial user interfae, and espeially diÆult for a naive user toexpress in a logi formalism. Moreover, I will show how the stru-ture of the Ativity Tree an be exploited by a system for managingonstraints in order to allow for more exible, natural, and robustdialogues.Many of the examples ited in this paper derive from a dialoguesystem meant for ontrolling an autonomous heliopter. This is be-ause the CSLI dialogue manager and the ativity modeling/onstraintmanagement system presented here were made to work �rst in thisdomain. A toy version of the urrent system has been built for on-trolling an imaginary \robot butler," and previous, less-advaned, in-antations of the system have been adapted for various other dialoguesystems, inluding an in-ar stereo ontroller and a voie interfae toa sheduler, like the ones used on personal digital assistants (PDAs).The goal of the work presented here is to reate a straightforwardmeans of porting the dialogue front-end to further appliations.3.1 Fitting in a Dialogue System ArhitetureIn terms of existing arhitetures for dialogue systems, this projetis meant to serve as a link between a dialogue manager and a de-vie/agent. Beause this framework represents information whih isommon aross all task-oriented devies in a single format, the dia-logue manager needs only to have algorithms whih operate over this21



more abstrat struture. This saves us from having to make ad-hohanges to the dialogue manager for eah new devie. Spei�ally,rather than building into the dialogue manager knowledge about eahdevie for whih it must failiate dialogue, the goal is to provide thedialogue manager with general knowledge about how task-oriented di-alogues work in general, and how joint ativities are strutured. Thegoal of this paper is to develop a framework by whih suh knowl-edge an be spei�ed delaratively, so that general-purpose algorithmsin the dialogue manager an operate over the delaratively de�nedinformation in order to failitate omplex task-oriented dialogues.Throughout this paper, I will assume that a dialogue manager witha basi set of apabilities already exists. Spei�ally, I will assume thatthe dialogue manager is apable of doing the following:� Converting natural language to logial forms whih it uses inter-nally as a semanti representation of natural language;� Generating natural language from suh logial forms;� Keeping trak of the ontext provided by previous disourse sothat dialogue games like question-answer pairs and ommand-aknowledgement pairs an be produed and understood;� Further using this ontext to do suh things as determine thereferent of anaphori expressions and aggregate sets of utteranesto be said by the system so that they ow onversationally (seee.g. [Ste01℄ on aggregation).Moreover, I assume that this dialogue manager arhiteture anbe interfaed, if desired, to the following omponents:� An automati speeh reognizer,� A parser,� A graphial user interfae,� A text-to-speeh synthesizer.I make these assumptions beause suh a system exists in the formof the CSLI dialogue manager ([LGP02℄). Moreover, similar systemshave been built as was noted in setion 2.1.2. The framework desribedin this paper is meant to further enhane suh a dialogue system,though it is ambivalent, for the most part, with regard to the way inwhih the dialogue system atually provides most of this funtionality.The dialogue-manager algorithms desribed in this paper have been22



implemented as part of the CSLI dialogue manager, but they ouldalso be used to extend other similar dialogue managers.4 The Ativity Tree and AtivitiesIn order to dialogue enable task-oriented agents like mobile robots,it is ritial that the dialogue manager maintain a representation ofwhat the devie it is ontrolling is atually doing, plans to do, andhas already done at any given point in time. It is important thatthis representation, or at least some aspets of it, be onvertible tonatural language. That is, the dialogue system should be able to re-spond to questions of the form What are you doing?. Being able toanswer questions like these is ritial for avoiding operator onfusion.The dialogue system should be able to desribe the urrent state ofthe robot in a manner that the operator an understand. Moreover,a dialogue system should be able to answer, at at least some basilevel, the question of why the devie is behaving as it is at any givenmoment. In partiular, it should be able to answer questions likeWhy are you doing X?. As was disussed above, the urrent ontrollanguages like PRS-LITE for omplex devies often make the answer-ing of suh questions diÆult beause they don't produe an easilyomprehensible piture of how the devie operates.In addition, sine the goal is to allow task-oriented agents to ol-laborate with the human operator in joint ativities, the representationshould represent not just the tasks that the devie is engaged in, butthose that the human operator may be doing as well. The intera-tions between the two agents' ativities should be understandable, sothat the way in whih partiular ations by eah agent give rise tooordinated joint ations is lear and desribable in natural language.Moreover the dialogue system also needs to be able to ommuniatethe desires and intentions of the human operator to the robot itself.As suh, its representation of the state of the devie should be rihenough so that the ommands and orretions made by the operatoran be aurately ommuniated to the system.Given the above onsiderations, it is apparent that the representa-tion we need is not one whih inludes every system-level detail of howthe devie (or human) will aomplish a given task. Rather, the levelof detail should be appropriate to the ations whih need to be dis-ussed in order to aomplish the goals of the task. For instane, even23



though we know generally that braking and aelerating are involvedin the proess of driving a ar from one plae to another, we mighthoose not to model this level of detail in the dialogue system. Perhapsfor the dialogue system we are designing, we simply don't are aboutdisussing the details of aelerating and braking { instead, we wishto fous only on a higher level of granularity. A dialogue designer,then, should be able to model the ations of the devie and human ata level of granularity appropriate to the task at hand.Even if we did wish to disuss fairly low level details about how thedevie works, our representation should not be ommitted to neessar-ily modeling how intelligent devies/agents atually perform ations.Rather, it should be geared toward the way in whih humans oneptu-alize the ations being performed. That is, the representation shouldreet the state of the devie in suh a way that a human operatoran make sense of it. The representation should provide a mappingbetween the human's oneptualization of how a partiular ation isperformed and the agent/devie's, rather than modeling the way inwhih the robot atually does the ations neessary to ahieve thegoal. It should not be a model of the way in whih individual iruitsand motors of a robot work together to pik up a blok, for example,but it should be deomposed in terms that the human operator an beexpeted to understand { perhaps, in this example, this would onsistof bending the elbow, opening the �ngers, losing them around the ob-jet, and then raising the arm. Just as humans do not generally speakat the level of �ring neurons or strething musle �bers when they aregiving instrutions to one another, we should not seek to model thislevel of detail in a dialogue system. Indeed, it is exatly these sortsof details that we are attempting to get away from by using naturallanguage to interat with devies: we would like to be able to interatwith them on the level at whih we oneptualize and understand theworld, not the way in whih they do. As suh, it is ruial not that therepresentation in the dialogue manager be true to the inner workingsof the devie, but that it is able to represent these inner workings ina way whih humans an readily oneptualize. Only in this ase anthe human operator suessfully partiipate in joint ativities with thedevie.At �rst blush, it appears that simple slot-�lling dialogues, likethose disussed in setion 2.1.1 above, might suÆe for understand-ing the desires and intentions of the human operator { after all, aommand and ontrol system mainly needs to understand ommands24



from the human operator and then ommuniate them to the devie.However, the dialogue snippets in (2) and (3) below demonstrate howmode onfusion an easily arise if a dialogue system does not au-rately model the sort of \ommon-sense" knowledge that a humanoperator knows about tasks that a devie might perform. In otherwords, the dialogue system needs to understand not only what sortof ativities the devie and human operator are undertaking, but howthese ativities relate to larger goals and/or other ativities.(2) O: Patrol between the tower and the shoolS: Okay. Now patrolling between the tower and Spring�eldshool....O: Fly to the tower at high speed.The desire of the operator in (2) seems relatively lear. He or shedesires that the heliopter patrol between the tower and the shool,and moreover that when the heliopter is ying to the tower as part ofthis mission, it should do so at high speed. Another interpretation ofthe above dialogue is, however, that the operator at �rst wanted theheliopter to patrol, but then hanged his mind and simply wanted itto y to the tower at high speed. A dialogue that follows exatly thissort of pattern appears in (3):(3) O: Patrol between the tower and the shool.S: Okay. Now patrolling between the tower and Spring�eldshool....O: Deliver the medial supplies to the tower at high speed.The above dialogue follows the exat same sort of pattern as theother one, but (assuming the medial supplies are not urrently on-board the heliopter, and they do indeed need to be piked up) itsmost feliitous interpretation is that the operator intends that theheliopter anel (or at least suspend) its patrol operation and deliverthe medial supplies immediately.What's highlighted here is that the dialogue system needs to some-how be able to understand that the ways the operator's �rst and se-ond utteranes are related in (2) and (3) are di�erent. In (2) the se-ond utterane elaborates the �rst, while in (3) the seond ontradits25



(or revises or stands in ontrast to) the �rst. The dialogue managermust be empowered with some ommon-sense knowledge in order todo this: spei�ally, it needs to know that \ying to the tower" is infat a sub-ativity of \patrolling between the tower and the shool."It is not simply enough for the dialogue system to know that the he-liopter is \patrolling" { but it also must know that a omponent ofthis \patrolling" ativity is ying to a partiular loation.In order to enable the dialogue manager to make inferenes likethe one above, as well as further inferenes whih I'll disuss later, Ideveloped for this projet the representation of an Ativity Tree whihan be embedded as part of the Information State of a dialogue man-ager. The Ativity Tree is used as a medium of ommuniation to andfrom the devie and the dialogue manager; it is meant to represent theurrent state of the joint ativities being undertaken by the operatorand the devie, or at least the portion of this state that is relevant forenabling meaningful disourse with the human operator. The AtivityTree onsists of a tree of ativities (see below), where the desendantsof a partiular ativity are sub-ativities of that ativity. Eah ativ-ity, at any given moment, must be in a partiular state, where a validstate must be one of the following:not resolved : the ativity has only been partially desribed by theuser, not all of its parameters have yet been setresolved : the ativity has been fully desribedrequest send : the ativity should be sent to the devie to be planned,when it is appropriate to do soplanned : ativity has been planned by the devie plannersent : the ativity has been sent to the devie (or operator) to exeuteurrent : the devie (or operator) is urrently exeuting the ativitysuspended : the ativity has been inde�nitely suspendedanelled : the ativity has been anelleddone : the ativity was suessfully ompletedskipped : the goals of the ativity were already true, so it wasskippedfailed preonditions : the preonditions required for the ativityto be exeuted do not holdonstraint violation : the ativity, as urrently spei�ed, violatesone or more of the urrent onstraints (see setion 7)26



onits : the ativity has a resoure onit with other ativitiesThe Ativity Tree has a root, whih will hold important informa-tion for the onstraint management system whih will be desribedlater. The root, however, does not atually represent any partiularativity the devie (or operator) is, has been, or plans to be engagedin, and as suh it has no state. Due to this lak of a true root, theAtivity Tree is atually better viewed as a forest whih ontains treesof ativities, where eah tree may onsist of urrently exeuting orplanned ativities. In this way, the representation of the urrent stateof the system mirrors that used by robot ontrol languages like PRS-LITE, disussed in setion 2.3. Suh a representation is the naturalresult of having hierarhially struturing ativities of whih multipleones may be exeuting onurrently.The relatively simple Ativity Tree for the patrolling example givenabove looks like this (at the moment in time when the heliopter hasown to the tower, then to the shool, and is now ying bak to thetower as part of its patrol operation):root..patrol_between (tower) (shool) [urrent℄....go (tower) [done℄......take_off [done℄......fly_atom (tower) [done℄....go (shool) [done℄......take_off [skipped℄......fly_atom (shool) [done℄....go (tower) [urrent℄......take_off [skipped℄......fly_atom (tower) [urrent℄Note that nodes whih are indented below other nodes are their de-sendants. For instane, go (shool) is a hild node of patrol between(tower) in the above example. The state of eah node is given inbrakets { for instane, [done℄. The onventions used in the abovediagram will be used throughout this paper.The Ativity Tree is meant to be similar oneptually to the typesof representations developed by Clark in [Cla96℄, and indeed it ismeant to serve a similar purpose. Clark makes a powerful ase inhis book that an agent must be able to understand and model thejoint ativities in whih he/she/it is engaged. Indeed, he shows thatwithout suh an understanding it would be impossible to omprehend27



and produe utteranes whih both make sense given the urrent on-text, and further the aomplishment of mutual goals. The AtivityTree is meant to provide just suh a ontext for the dialogue manager,so that it an enable the devie to partiipate in meaningful and usefuldialogues about the joint ativities in whih it is a partiipant.5 The Reipe Sripting LanguageWhile the Ativity Tree represents the relationship among ativities,the meshing of natural-language tehnology with agent-ontrol teh-nology beomes apparent when we examine the representation devel-oped here to desribe the ativities themselves. Eah ativity on theAtivity Tree is an instantiation of a reipe whih omes from a reipelibrary for a partiular devie. Coneptually, this mirrors the pro-posals in [Pol90℄; and it is similar in onept to the plan libraries in[ASF+95℄. The reipes in the library, as well as partiular propertiesof the library itself, are ompiled from a reipe sript, whih must bewritten for the devie that is being dialogue-enabled. The reipe sriptde�nes reipes for undertaking partiular ativities (often in the pur-suit of partiular goals). Eah reipe models the domain-dependentommon-sense knowledge whih is needed to give rise to the strutureson the Ativity Tree whih the dialogue manager uses for interpretingand produing relevant utteranes. Moreover, eah ontains speialonstruts whih are used by the dialogue manager to more e�etivelyommuniate, but whih have nothing to do diretly with the modelof how a ertain ation is ahieved (for example, the Natural LanguageMapping and Natural Language Slots onstruts whih are desribedbelow).The reipe sript is formatted aording to a speial reipe sript-ing language designed as part of this projet. The reipe sript isdesigned so that reipes an be desribed in a powerful enough for-malism to engage in joint ativities with relatively intelligent agents ordevies; at the same time, it requires onstruts whih make desribingand querying about the ativities instantiated from the reipes withnatural language a straightforward task for the dialogue front-end tofailitate. Moreover, it is designed so that onstraints (disussed insetion 7) an be desribed that range over the ontents of the instan-tiated ativities. A reipe sript onsists of a preamble followed by aset of reipes, where eah reipe an be instantiated as a partiular28



ativity on a partiular ativity tree for a partiular devie.Eah reipe de�ned in the reipe sript is added to the reipelibrary whih is used by the dialogue manager to understand the a-pabilities of the devie. A reipe an be oneptualized as onsistingof the following omponents:� A set of slots, similar in nature to the sets of slots used inform-�lling dialogues, whih represent the piees of informationneeded before a reipe an be instantiated into an atual ativity(or plan) apable of being exeuted by the devie (or humanoperator).� An algorithm (the reipe body) whih operates over this setof slots that spei�es how the ativity should be deomposedfurther to aomplish its goals.� Devie information about the onditions under whih thereipe may be exeuted (preonditions), the results of the a-tions desribed by the reipe (goals), the resoures needed toperform the ations desribed by the reipe (resoure list), andonstraints over the way in whih the ations will be performed.� Linguisti information about how to desribe under variousirumstanes (or when to refrain from desribing) the instanti-ated ativity as it is being performed.In order to make the information in the reipe sript available tothe dialogue system, the sript is �rst `ompiled' into a format thatan be used more readily. This is done using a ustomized lexer-parserreated in Java using ANTLR [Par00℄, a parser generator for Java.The following output �les are generated by the ompilation proess:1. CSLI AtivityProperties.java: de�nes the ativity proper-ties2. myDevie.rep, where myDevie is provided as part of the sript:de�nes the body of eah ativity3. CSLI TaskMather.java: A simple lass with a hash table to doNL mapping of ommand names4. domains.el: De�nes the domain of eah slot5. onstraints.el: Provides the ECLiPSe prediates the Dia-logue Manager will all 29



In this setion and the next, I will disuss the omponents of thepreamble and of the reipe body, why they are relevant to dialogue sys-tems, and how the information is `ompiled into' the dialogue managerfor use at runtime. For omplete examples of sripts written in theformalism that will be desribed, please see Appendix B.5.1 The PreambleThe preamble of the reipe sripting language has several setionswhih I will disuss here.5.1.1 The Reipe LibraryThe �rst line of the preamble must be of the form:repfile "myRepFile"where myRepFile is the name of the �le where the reipe library willbe stored.5.1.2 Type De�nitionsNext, there must appear a Types setion, in whih valid slot types arede�ned. De�ning a type, in this ontext, onsists simply of de�ningthe valid domain of values that slots of the given type may take on.These domains are used for reasoning about onstraints (see setion 7){ if slots of a partiular type will never be involved in suh reasoning,then their domains may be left unspei�ed.Types are delared using the following format:Typename :: [ value 1, ..., value n ℄;where eah value i is an allowable value for this type. If there areno suh values, then the type does not partiipate in any onstraintreasoning and it an take on any value.An example of a Types setion is the following:Types {Speed :: ["high", "medium", "low"℄;Altitude :: ["high", "medium", "low"℄;Loation :: ["tower", "shool","base", "lake"℄;30



MoveableObjet :: ["water", "medial_kit"℄;}The above delares four types alled Speed, Altitude, Loation, andMoveableObjet and assigns their respetive domains.5.1.3 De�nable/Monitor Slot De�nitionsThe next two setions of the reipe sript de�ne all the valid De�nableSlots andMonitor Slots that a partiular reipe might have (please seethe next setion for a full de�nition of what exatly a de�nable slotis). These slots will represent the hunks of information the deviewill need in order to instantiate and exeute the reipe. In partiular,the Type of eah slot must be spei�ed, as well as eah slot's minimumand maximum length. Additionally, the default value of the slot maybe spei�ed; for example, medium is spei�ed below as the default fortoAltitude and toSpeed Building upon the above type de�nitions,an example that omes from the WITAS domain is the following:DefinableSlots {Loation toLoation:1-3;Altitude toAltitude:1-3 = "medium";Speed toSpeed:1-3 = "medium";MoveableObjet arryObjet:1;}MonitorSlots {Speed urSpeed:1;Altitude urAltitude:1;Speed toAltitude:1;MoveableObjet grippedObjet:1;} While in the above examples there is a ertain parallelism betweenthe monitor slots and the de�nable slots, this is ertainly not requiredby the formalism. The above de�nitions de�ne de�nable slots namedtoLoation, toAltitude, and toSpeed eah with a minimum length of 1and a maximum length of 3 indies. The arryObjet slot is de�ned ashaving only a single index (the heliopter an only arry one objet ata time). The monitor slots are meant to be used to reet the devie'sstate; in the above example, slots named urSpeed, urAltitude, toAlti-tude, and grippedObjet are de�ned, eah with a single index. In the31



WITAS domain, these slots are used to keep trak of the heliopter'surrent state.5.1.4 ResouresThe �nal setion of the preamble is the resoures delaration setion.Here, eah of the resoures that may be used by the various ativitiesof the devie must be delared. Eah resoure is simply a string. Hereis an example from the WITAS domain:Resoures {uav;gripper;amera;}5.2 Components of a ReipeAfter the preamble of the ativity sript appears a list of reipes, whereeah reipe an be instantiated into an ativity. Eah reipe onsistsof the following omponents:1. An ativity type. e.g.: take off, land at loation, patrol among loations2. A Natural Language Mapping of the ativity type3. An Agent Tag indiating whih agent should exeute the ativity4. A set of de�nable slots whih ontain relevant parameters to thethis ativity, of whih some may be required and others may beoptional. e.g.: toLoation (the loation to go to), or toSpeedthe speed at whih to y there5. A set of monitor slots whih are meant to be �lled at runtimewith information about the state of the devie. e.g.: urLoation(the urrent loation of the heliopter), urSpeed (the urrentspeed of the heliopter)6. Resoures. The set of resoures that this ativity needs. e.g.: Aamera7. Preonditions. A set of onditions whih must be true in orderto do this ativity8. Goals. A representation of the desired outome of the ativity9. Banned. A set of \states of the devies" whih are banned32



10. Natural Language Slots. An assoiation between an ativity'sstate, and the detail to whih it out to be desribed.11. A Super Reipe. Eah reipe may optionally inherit some ofits properties from a super (or parent) reipe, in a fashion simi-lar to other objet-oriented, single-inheritane programming lan-guages, like Java.12. Body. A sript whih de�nes what this reipe does, when itbeomes instantiated into an Ativity.Below, I will desribe eah omponent of a reipe, the syntax forde�ning it, and the manner by whih the information it embodies is`ompiled' into the dialogue manager by the \reipe ompiler."5.2.1 Ativity Type, NL Mapping, and Agent TagEah reipe is given a partiular Ativity Type, whih is simply aunique name for the reipe. The NLMapping of a reipe desribesthe verb that should atually be output by the system. So, while adesigner might end up assigning a partiular reipe an Ativity Typeof patrol between searh, this ativity an have an NL Mapping of \pa-trol" { whih is the verb that will be used when the system atuallydisusses this ativity. The NL mapping exists beause several dis-tint (though often related) onepts in a language may be mappedto a single verb { for example, while the onepts invoked by \patrolbetween the tower and the shool" and \patrol at the tower for a bluear" are distint (and in the formalism provided here, this distintionis aptured by having two distint reipes), both onepts are apturedin English by the single verb patrol.Eah reipe must also delare an agent tag whih identi�es theagent who should exeute ativities whih instantiate the partiularreipe. In the urrent system, only the tags USER and SYSTEM aresupported: where USER refers to ations that the human operatorshould take, and SYSTEM refers to the devie being ontrolled. Intheory, this set of tags ould be expanded to inlude more types ofagents and might be hanged to allow for a list of agents, all of whihould potentially omplete the ation.The ativity type, NL Mapping, and agent tag are de�ned at thebeginning of the de�nition of eah reipe. The syntax is as follows:taskdef<ativity type, "nl mapping"> agent tagf33



//rest of reipe definition goes hereg During the reipe ompilation proess, the mappings from ativitytype to natural language mapping are written to a hash table whihan be aessed by the dialogue manager through methods providedin CSLI TaskMather.java. The agent tag is stored as part of thereipe in the reipe library.5.2.2 De�nable SlotsThe set of de�nable slots are those slots whose values must be spei�edbefore an ativity an be exeuted by the devie. For instane, in theWITAS projet, before the heliopter an y somewhere, it must knowto where it should y. Hene the ativity go ontains a de�nable slotnamed toLoation, whih is meant to hold the loation to whih theheliopter should y. Typially, de�nable slots orrespond roughly tothe arguments of a verb, (here, y to the tower), or potentially toother modi�ers like adverbs (y quikly) { though there is nothing inthe formalism whih atually requires this.The set of required de�nable slots are those slots whih must bespei�ed expliitly by the operator, or inferred diretly from an opera-tor's (possibly multi-modal) utterane. On the other hand, the set ofoptional slots are those slots whose values an be be �lled in by defaultvalues, or through onstraints (to be disussed later). The syntax fordelaring a required slot is the following:required Type SlotName;While an optional slot is delared like this:optional Type SlotName;Consider, as an example, the reipe for transporting an objet fromone loation to another. In the WITAS system, this ativity ontainsthe following set of de�nable slots (whih are requisite as indiatedand are meant to orrespond to the onepts noted):� fromLoation (required: the loation from whih to pik up theobjet)� toLoation (required: the loation at whih to drop the objet)34



� arryObjet (required: the objet to arry)� fromSpeed (optional: the speed at whih to y to the �rst loa-tion)� fromAltitude (optional: the altitude at whih to y to the �rstloation)� toSpeed (optional: the speed at whih to y to the seond loa-tion)� toAltitude (optional: the altitude at whih to y to the seondloation)Using the types delared in setion 5.1.2, the above slots ould bede�ned as part of a reipe as follows:DefinableSlots {required fromLoation;required toLoation;required arryObjet;optional fromSpeed;optional fromAltitude;optional toSpeed;optional toAltitude;} Note too that the above assignments of required and optional makesense beause it is imperative that the system know what objet topik up, from where to pik it up, and where to drop it. The speed andaltitude it should y at, while neessary parameters, are not ritial,in some sense, to the ativity. While the ativity an be suessfullyaomplished no matter what their values are, the ativity annoteven, in some sense, be de�ned unless the required slots are �lled withvalues. The required de�nable slots, then, make up the ore notion ofthe ativity.The required ag, then, is a means by whih the dialogue managerknows when it should initiate a slot-�lling dialogue. If the operatorspei�es only some of the required slots in his or her initial ommand,then the dialogue manager will ask information-seeking questions ofthe operator until all of the required slots are �lled. On the otherhand, optional slots an be �lled in with default values if they arenot expliitly mentioned or �lled in through onstraints { they do not35



merit a slot-�lling sub-dialogue initiated by the dialogue manager.This will be further disussed in muh greater detail in setion 7.Eah slot also has assoiated with it a partiular type de�ned inthe preamble (see setion 5.1.2). In the WITAS system, for instane,fromLoation and toLoation are of type Loation, while arryObjet isof type MoveableObjet. The e�et of assigning a type to a partiularslot is that the domain of the slot beomes limited: arryObjet, forexample, an only be assigned to an objet that an, indeed, be arriedby the heliopter (the domain assoiated with a partiular type isde�ned in the types preamble of the reipe sript).The set of de�nable slots of a partiular instantiated reipe (akaativity) is aessible at runtime to the dialogue manager. In setion7, I will disuss how a slot's type (and hene, its domain) is relevantfor onstraint reasoning.5.2.3 Monitor SlotsThe monitor slots are simply a way to reet information about theurrent state of the devie at any given time. De�ning whih slotsare important to a reipe simply makes it more eÆient to alulatethe onstraints (to be disussed later) over the reipe. Like de�nableslots, the monitor slots of a partiular ativity are aessible to thedialogue manager at run time through the CSLI AtivityPropertieslass. The syntax for delaring monitor slots is idential to that forde�nable slots, exept no optional or required pre�x is used, sinethis onept does not apply to monitor slots.For example, the monitor slots for the go reipe in the WITASdomain are as follows:MonitorSlots {urLoation;urAltitude;urSpeed;}5.2.4 ResouresIt is often important to understand what resoures are needed in or-der to omplete a partiular ativity. For instane, in the WITASdomain, it is important to understand that ying somewhere requiresusing the entire heliopter, while taking a piture of something merely36



requires use of an on-board amera. This information an be used bythe dialogue manager to detet resoure onits and initiate intelli-gent dialogues about them. For instane, the CSLI dialogue managergenerates the following dialogue in the WITAS domain:(4) O: Fly to the shool.S: Now ying to the shool at medium speed and medium alti-tude....O: Deliver the medial supplies to base.S: Delivering the medial supplies to base onits with ying tothe shool.Should I deliver the medial supplies to the base now or later?O: Now please.S: Okay.I have suspended ying to the shool.Now ying to the hospital. [In order to pik up the medial sup-plies℄...The resoure onit is deteted by the dialogue manager and a rele-vant sub-dialogue is initiated. In order to failitate suh dialogue, eahreipe inludes a setion in whih the resoures required by any ativ-ity whih instantiated this reipe are listed aording to the followingsyntax:Resoures {resoure_1;resoure_2;...resoure_n;}During the reipe ompilation, this information is stored as part ofthe reipe in the reipe library.5.2.5 PreonditionsThe preonditions are the set of onditions whih must be true beforean ativity that instantiates a partiular reipe an be exeuted. Theseonditions are expressed in terms of prediates over the monitor andde�nable slots. These too are simply stored as a list whih is part ofthe reipe in the reipe library. The list is not simply a string, but37



a list of CSLI Expression objets whih are designed for the eÆientmanipulation of �rst order logi expressions.5.2.6 GoalsThese are the goals that an instantiation of a reipe is meant toahieve. These too are expressed in terms of prediates over the valuesof the monitor and de�nable slots. For instane, to express that thegoal of the \y to" ativity in the WITAS system is to atually movethe heliopter to a partiular loation, we might write the followinggoal: urLoation == toLoation meaning that the loation we weremeant to y to should be equal to the loation where we atuallyare. The goals as well are simply stored as a list of CSLI Expressionobjets in the reipe library entry for a partiular reipe.5.2.7 BannedEah reipe may ontain a list of logial relationships among the valuesof slots whih may be banned. For instane, to express the onstraintthat the heliopter shouldn't drop objets while at high altitude, wewrite as part of the reipe for the ativity type \drop" the followingitem on the banned list: urAltitude == \high". As I will disuss later,these onstraints are defeasible. That is, rather than de�ning impos-sible states of the world, they de�ne states of the devie that undernormal irumstanes should be avoided. The banned list is ompiledinto a similar format as the goals list during reipe ompilation.5.2.8 NLSlotsWhen the state of an ativity hanges, the dialogue manager oftenreports this state hange. For instane, when an ativity beomesurrent, the dialogue manager will give a report like Now ying lowto the tower at high speed. As a result, the dialogue manager must beable to map from an ativity to a natural language (or multi-modal)representation of that ativity. In this proess, the �lled-in slots of theativity are onsidered, as well as the ativity type, in order to produea meaningful utterane. As ativities beome more ompliated, withmore and more slots, it beomes unwieldy for the dialogue manager totalk about all the parameters of an ativity in eah utterane aboutthat ativity. For instane, when an ativity has ompleted, it's notalways neessary or desirable to onvey an entire desription to the38



user. When the heliopter has own to its destination in the WITASsystem for example, (5a) is preferred to (5b).(5) a. I have own to Spring�eld shool.b. I have own low to Spring�eld shool at high speed.Sine the goal of the ativity was to arrive at the loation, this isthe information that is really relevant. How the heliopter got thereis not so important, espeially onsidering that this information hasalready been negotiated by the operator and the system has alreadyannouned its intention to y to the shool at low altitude and highspeed.In pursuit of these ideas, the reipe sripting language inludes theability to assoiate the reporting of ativities in partiular states topartiular slots. For instane, to speify that for the ativity of yingwe'd like the heliopter to report its destination, height, and speedwhen it's atually doing that ativity, but not when it's reporting theompletion of the ativity, we write the following lines of sript:NLSlots {urrent: toLoation, toSpeed, toAltitude;done: toLoation;}This indiates to the dialogue manager that it should report the desti-nation (toLoation), target speed, and target altitude of the heliopterwhen it announes that it is urrently ying somewhere, but only thedestination when it has reahed somewhere. The results are dialoguessimilar to the following:(6) O: Fly low to the shool at high speed.S: Now ying low to the shool at high speed. [System reports:toAltitude, toLoation, toSpeed℄...S: I have own there. [System reports: toLoation℄In addition, the sript also allows for the left hand side to be default {whih gives the default set of slots to report in all states not expliitlymentioned.As ativities have more and more slots, and hene beome moreomplex and unwieldy to talk about (for instane, �ghting a �re, ortransporting objets), the ability to have easy ontrol over generationbeomes extremely useful. Indeed, for some ativities, you might wish39



to have \hidden" slots that the system should never try to disuss {or only disuss in rare irumstanes.The set of NL slots for eah state, as well as the default set (ifsupplied), are stored as part of the partiular reipe in the reipelibrary.5.2.9 Super Reipes: extends and abstratEah reipe may optionally extend other reipes. In the ontext ofthe reipe sripting language, this simply means that the reipe willinherit the values of all the setions listed above, with the exeption ofthe body, nlmapping, and ativity type. Moreover, ertain reipes maybe delared as abstrat, meaning that they are not meant to atuallyever be instantiated into ativities but only that they should serve assuper reipes to other reipes. For example, in the WITAS domain,there is de�ned an abstrat reipe alled move, whih embodies theonept of moving, but an't atually be instantiated. Instead, thereis another reipe alled go, whih should atually be instantiated whenthe heliopter is instruted to y somewhere. The desription of thesetwo ativities is given in �gure 1.5.2.10 BodyEah reipe optionally ontains a body, whih is a body of ode writtenin a speialized ativity sripting language whih I disuss in setion6. If a reipe doesn't ontain a body, then it is assumed to be atomi {that is, if it beomes instantiated then it should be sent to the devieto atually be exeuted, rather than further deomposed.6 The Reipe BodyThe body of a reipe onsists of a sript whih de�nes a reipe for a-tion { in the sense disussed in setion 2.2 { that desribes the ationswhih ought to be performed in order to aomplish the reipe's goals.In the formalism desribed here, we an think of the reipe body as thealgorithm whih desribes what should be done in an abstrat sense,and the slots as the data over whih the algorithm operates. Whilethe reipe body for the ativity of �ghting a �re desribes abstratlywhat's involved in �ghting a �re (ontinually piking up water from apartiular loation, arrying that water to the loation where the �re40



Figure 1: move and go { Inheritane and Abstrat Reipesabstrat taskdef<move,"move"> {DefinableSlots {required toLoation;optional fromLoation;optional toSpeed;}MonitorSlots {urLoation;urSpeed;}Resoures {uav;}Banned {toSpeed == "zero";}}taskdef<go,"go"> extends move {//inherits loations,speed from moveDefinableSlots {optional toAltitude;}MonitorSlots {urAltitude;}Banned {toAltitude == "zero";}NLSlots {default: toLoation;urrent: toLoation, toAltitude, toSpeed;}//definition of Body -- removed for this example} 41



is, and then dropping it until the �re is out), it is not until the de�n-able slots for this reipe are �lled in that it an be instantiated intoan ativity whih an be performed, sine these provide the requisiteinformation suh as where to pik up the water and where the waterought to be dropped. By requiring the algorithm desribed by thereipe body to operate over the values of the slots, a diret onnetionis made between the linguisti aspets involved in the task-orienteddialogue and the tasks at hand whih are being performed.The sript whih omposes the reipe body was oneived in orderto balane two objetives. First, it is meant to haraterize joint-ativities (to be done by the human and the devie together), as wellas ativities arried out only by the devie, in a way that mathes theway humans oneptualize doing ativities. That is, it should maththe way that humans atually think about and understand reipes forjoint ativities rather than simply represent the way in whih the de-vie atually arries out a spei� ation (as was disussed in setion4). On the other hand, it must be ompatible with the representationutilized by the intelligent agent or devie to the degree that the deviean atually exeute atomi ations spei�ed in the sript for it to do.If it meets both of these objetives { that is, if it is both ompat-ible with the way that humans oneptualize ativities and apableof deomposing into terms that the devie an work with { then itan suessfully at as an intermediary between the human and thedevie. When the devie performs the ations desribed by the sript,then the human will be able to understand why these ations are beingdone. On the other hand, when the human operator seeks to modifythe way in whih a partiular ation should be done, the devie willbe able to understand these desires in terms of the data/parameters(i.e. the slots) over whih a reipe operates. Moreover, beause slotsare also linguistially motivated, the reipes should be easy both todesribe and to understand desriptions of using natural language.Toward the end of mathing up with the representations neededby an intelligent devie or agent, the sript whih makes up the reipebody is designed to be extremely similar to the sripts that are a-tually used to ontrol mobile robots. It is based loosely on the ACTformalism, whih is now inluded as part of the COLBERT [Kon97℄sripting language in Saphira, a software pakage distributed by A-tivMedia Robotis with its mobile robots. While, at �rst, atuallyusing one of these languages seemed tempting, I hose instead to writemy own sript interpreter and language to better pursue the goal of42



making the sript math up with the way that humans oneptualizeativities. First, I wanted to naturally and expliitly be able to makereferenes to the slots de�ned for the ativity. Seond, I wanted totry to balane the language so that it would be simple enough, andstraightforward enough, that natural language ould be generated todesribe it. COLBERT an be interfaed diretly to C, and I worriedthat the expressiveness of a full edged programming language likeC would be diÆult to talk about using natural language and, moreimportantly, I wanted the language to provide a framework whihwould be onduive to designing reipes in a way whih would makethem math up with the way humans oneptualize ativities { asthe relationship among onurrent ativities generated by COLBERTan often be diÆut for a human to understand. Moreover, I workedunder the premise that the sorts of plans that users would want totalk about (in terms of how they were further deomposed) wouldnot be arbitrarily omplex. That is, they would be the sorts of plansthat a person ould desribe in a few sentenes. In partiular, I wor-ried about the omplex interation between global variables that ansometimes be found in mobile robots atually using COLBERT andSaphira. Muh ommuniation among ativities whih are runningsimultaneously is often done through the setting of global variables {suh behavior makes the relationship between di�erent ativities ex-tremely diÆult to desribe and their interation abstruse. Ratherthan write a sripting language appropriate for writing all ativitiesthat a mobile robot ould ever do, my goal was to write a sriptinglanguage that desribed the sorts of ativities that a person mightreasonably be expeted to desribe and want to talk about. In par-tiular, I assumed that the operator wouldn't want to be onernedwith the �ne details involved in omplex robot ations { for example,keeping the robot loalized as it moves to a loation, or ensuring thatits pith and yaw are orret if it is a ying robot. Rather, I assumedthat the user would want to disuss ativities at the level at whih heor she might disuss the ativities of the robot if he or she were plan-ning joint ation with another person { a level at whih suh detailsas how movement is aomplished and headings are maintained arenot disussed.The sripting language, then, onsists of the following ommandsinspired in large part by the ACT formalism (brakets indiate op-tional parameters):� intend ativity(slot assignments) [bloking℄ [at name℄43



� stop at nameAnd the following loop onstruts:� repeat f...g� do f...g while(onditions)� foreah(assignments) f...g6.1 intend and stopIntend and Stop are ommands to reate new ativities and stopones whih are running. Ativities whih are intended are sent tobe planned and exeuted.6.1.1 intendThe proess of intending an ativity is one of attempting to load thereipe with the name ativity and instantiating its slots with the valuesgiven in slot assignments. The slot assignments link a partiularslot in the spawning ativity with the partiular slot in the hild a-tivity. For instane, onsider the simple body of the ativity for \go"in the WITAS system. It is as follows:Body {intend take_off(toAltitude=THIS.toAltitude);foreah toLoation t, toAltitude a, toSpeed s {intend fly_atom(toLoation=t,toAltitude=a, toSpeed=s);}}This deomposes go into a take off and a series of fly atom ativi-ties. For the take off ativities, the toAltitude slot of the take offativity is linked to the take off slot of the go ativity. Similarly,the toLoation, toAltitude, and toSpeed slots of the fly atom a-tivities whih will be spawned, are linked to partiular indies of theirorresponding slots in the parent ativity of \go." This is done usingthe foreah() loop onstrution, whih I'll disuss later.It is important to note that the slot assignments between parentsand hildren are not like those made in many traditional program-ming languages. The value of the parent ativity's slot is not simplyopied over into the hild's slot upon reation of the task. Rather, thetwo atually (for all intents and purposes) share the slot. It is as if44



the value of the slot were passed in by referene. Hene, if the valueof toLoation[0℄ hanges in the go ativity, then the orrespond-ing toLoation[0℄ will be updated in the fly atom. The slots arestruture shared.To understand why suh struture sharing is important, onsiderthe following example dialogue:(7) A: Patrol between the tower and the shool.B: Okay, now ying to the tower at medium altitude and mediumspeed.A: Fly there at high altitude.B: Okay.B: Now ying to the tower at high altitude and medium speed....B: I have own there.B: Now ying to the shool at medium speed and medium alti-tude....B: I have own there.B: Now ying to the tower at high altitude and medium speed.Note that eah suessive at of ying to the tower is done at highaltitude, not just the partiular instane of it whih was modi�ed bythe user. This ours beause the �rst index of the toAltitude slotof patrol is shared with its hild go. When its hild's slot+index ismodi�ed by the operator, then, so too is its slot+index. Hene, whenit spawns the seond instane of ying to the tower, the operator'sinstrution is retained appropriately.6.1.2 stop and noblokIn the above example, all of the spawned ativities were (by default)bloking. That is, until the take off ativity was ompleted by thesystem, it did not try to y anywhere. Mobile robots, however, oftenhave several ativities running simultaneously. In order to supportthis, I followed the onventions of the COLBERT programming lan-guage, and allowed for the ability to spawn hild ativities in a non-bloking fashion, as in the following snippet from the find ativity inWITAS:Body { 45



intend loate(searhItem = THIS.searhItem);intend trak(followItem = THIS.notiedItem) myTrak noblok;intend identify(searhItem = THIS.searhItem);stop myTrak;} In this example, the system �rst tries to loate an objet in theworld (for example, a red ar) via the loate method. When thisativity is done (and hene, an objet mathing the desired desriptionhas been loated), the reipe exeutor then spawns a new hild taskof trak { whih essentially follows the ar and keeps it in sight. Thenoblok keyword is used to indiate that the exeutor should go aheadand ontinue exeuting the ode that follows, even before the trakingativity is ompleted. In addition, this partiular instane of trak isassigned a name { myTrak { so that it an be referened later. Inpartiular, it is passed to the stop ommand, whih halts the ativityafter the objet has been identi�ed.6.2 Loops: repeat, do. . . while, and foreahThe looping onstruts behave as in most proedural languages. Arepeat loop simply repeats the ontents inside of its braes endlessly,until the ativity is expliitly stopped by the stop ommand, or an-elled by the user. The do...while loop exeutes its ontents forever,or until the ondition of the while(ondition) beomes true. This on-dition an be diret equality and inequality statements over the valuesof partiular slots, or alls to prediates over these values. In order totest the more omplex prediates (for example, in the WITAS system,there is a prediate for fire out whih tests if a partiular �re is outin the world) at runtime, the exeution system de�nes an interfaethat the domain-spei� prediates must implement in order to havetheir values tested, as will be disussed later.The foreah onstrut is a speialized version of the more stan-dard \foreah" onstruts in programming languages that allow forthe iteration of a list. In this ontext, a foreah loop iterates over allthe �lled-in indies of a slot, or a set of slots. By allowing for thesimultaneous iteration over more than one slot simultaneously, I allowfor more subtle relationships between slots. For instane, in the odefrom go above, eah fly atom ativity is instantiated with a parallel46



set of toLoation, toAltitude, and toSpeed parameters. This al-lows for go to deompose ying to several sequential destinations atseveral di�erent altitudes and speeds in a onvenient manner { thatis, the slots an be used as parallel arrays. This ability has been usedextensively in reipes reated for the CSLI dialogue system.7 Constraints and DefaultsAs devies beome apable of more omplex behavior and the numberof parameters that an be set for eah ativity grows, it beomesdesirable to express onstraints over the values of those parameters.For instane, in the WITAS system, the operator should be able toontrol many parameters that ditate how the heliopter should y,suh as speed and altitude. At the same time, it would be unwieldy ifthe operator were required to speify these parameters eah time heor she gave the heliopter a new ommand { for instane, to y to aspei� loation. In pursuit of this, my ativity model supports threerelevant notions: optional de�nable slots, defaults, and onstraints.As was disussed above, optional de�nable slots are those slots whosevalues need not neessarily be assigned expliitly (or inferred diretly)from the operator's ommands or answers to questions posed by thesystem. Instead, suh slots may take on their values through the useof defaults and onstraints.The motivation for defaults and onstraints emerges out of everyday observations about the way that people use language to desribeativities. Most ommon ativities involve some set of parameterswhih don't neessarily need to be spei�ed { for instane a personan walk or drive quikly or he an talk or sing loudly, but he an alsosimply walk or drive, talk or sing. When I ask a person to walk frompoint A to point B, it doesn't matter so muh how fast he walks, butjust that he atually sueeds in walking between point A and point B;nonetheless, he will still have to perform the ation at some partiularspeed. On the other hand, I an spei�ally assert that while walkingbetween point A and point B, he should walk at a speed of 2 milesper hour. Then, if he were to walk at 5 miles per hour between A andB, we would say that he had not done the ation whih I ommandedhim to do. Here, then, we see that speed for the ativity of walking isoptional, and were we to reate a reipe sript for walking, speed wouldbe an optional slot. Moreover, it ould be assigned some default value,47



say 3 miles per hour, whih would be used when speed wasn't expliitlyspei�ed { sine walking must be done at some spei� speed.From a more pratial point of view, defaults beome useful indialogues with possibly omplex devies simply beause if they don'texist, dialogues an beome tedious. Consider, for example, the on-trast between the dialogues where no defaults exist in (8a) and (8b)and one in whih defaults are used in (8).(8) a. O: Fly to the shool.S: Okay. At what speed should I y?O: Medium speed.S: Okay. At what altitude should I y?O: Medium altitude.S: Okay. Now ying to the shool and medium altitude andmedium speed.b. O: Fly to the shool at medium altitude and medium speed.S: Okay. Now ying to the shool at medium altitude andmedium speed.. O: Fly to the shool.S: Okay. Now ying to the shool at medium altitude andmedium speed.One ativities exist whih have default values that are �lled inautomatially, as in (8), it beomes immediately desirable that thereshould be a straightforward means to rede�ne these defaults on they. Perhaps a deadline is approahing, and I need you to help mewith several tasks { making opies of a presentation, delivering theopies, and sending o� several letters. Rather than telling you in turnto do eah task quikly, I might simply say something like \Please doeverything I ask you to do today quikly." In essene, I have, at leasttemporarily, rede�ned the default speed at whih I'd like you to doall the ations I ask you to do. Moreover, I've de�ned a onstraintwhih identi�es how you should do all ations I've asked you to do,and all future ativities whih haven't even yet been spei�ed. That is,rather than just hanging the parameters of spei� ations I've askedyou to do, I've issued more general guidelines whih also apply tofuture ativities as well. For example, onsider the ontrast betweenthe dialogue in (9a) in whih defaults an't be rede�ned and the onein (9b) where they an. 48



(9) a. O: Fly to the shool at high speed and high altitude.S: Now ying to the shool at high speed and high altitude....O: Fly to the tower at high speed and high altitude.S: Now ying to the tower at high speed and high altitude.b. O: Always y high and fast.S: Okay....O: Fly to the shool.S: Now ying to the shool at high speed and high altitude....O: Fly to the tower.S: Now ying to the tower at high speed and high altitude.One we have the power to rede�ne defaults in a natural way, itbeomes immediately lear that suh utteranes seem to belong to alarger lass of dialogue moves, whih I'll all onstraint spei�ations.For instane, it seems just as natural to negate the values that ertainslots an take on, or perhaps even to speify more omplex onstraintssuh as disjuntions. Consider the sample utteranes in (10) whih Ilaim also belong to this natural lass of dialogue moves.(10) a. O: Never y high.b. O: Always/Never y low or fast.The dialogue moves in (8), (9b), and (10) then seem to makeup a natural lass that ould be fruitfully used aross a wide-rangeof devies and agents. Moreover, the lass appears to be natural inthe sense that humans often take these sorts of dialogues for grantedbeause they have underlying assumptions about the importane ofvarious \parameters," their default values, and the way that the val-ues that an �ll in these parameters an be onstrained. While robotdesigners or programmers may be used to thinking about the variousparameters that a robot program or funtion might take, people gener-ally make impliit assumptions about the default values of parametersof ativities, assumptions whih only beome salient when other pres-sures arise (like an upoming deadline). Moreover, people alreadyhave natural ways of expressing onstraints in natural language, whileit is more diÆult and omplex (as will be disussed below) to expressthe interation between these onstraints in a formalism whih an in-telligent devie an handle. The onversational intelligene impliit in49



understanding the interation between onstraints and defaults, how-ever, an be applied aross a wide-range of task-oriented dialogues;as suh it is an ideal andidate for modularization. In this setion,I will disuss how the framework presented here models defaults andonstraints by building on the reipe/ativity representations alreadydisussed; moreover, I will show how the model an be used to fa-ilitate dialogues like those in (8), (9b), and (10), as well as otherswhih will be motivated later.7.1 DefaultsThis setion very briey introdues a basi algorithm for proessingdefaults; this algorithm will be revised to take into aount the inter-ation between onstraints and defaults in setion 7.4.1. In the reipesript, eah de�nable slot an be assigned a default value in the slotdelaration setion (see setion 5.1.3). For slots related to speed, forinstane, the WITAS system assigns a default value of "medium". Ifall of the required de�nable slots have been set, then any optional slotswhih have not been expliitly assigned a value will be assigned theirappropriate default values before the ativity is sent to the devie tobe exeuted.7.2 ConstraintsWhile the ability to have default values is useful, it is not suÆientto totally free the operator from dialogues suh as that in (9a). Putin terms of the representation of ativities/reipes developed so far inthis paper, this dialogue was frustrating beause in it, the operatorwas fored to be onstantly speifying lists of values to be assigned tooptional slots for whih the default value was not the desired value.Suh diÆulties, as well as the bene�ts that arise from understandingutteranes suh as those in (10), motivate a generi interfae for spe-ifying and managing onstraints over slot values { an interfae whihis presented here.At the simplest level, these onstraints allow a means for the op-erator to rede�ne defaults, with utteranes suh as Always y high.Constraints an be muh more powerful than this, however. Theyan also inlude negations, as in Never y high, onditionals suh asWhen ying to the shool, y low, or disjuntions suh as Always y50



at low altitude or at high speed.1 In priniple, the system is apableof handling arbitrary �rst-order-logi formulas involving the values ofthe slots of ativities { however, what subset is atually within therange of human ompetene is an open question whih the followingdisussion will hopefully shed some light on (though I don't proposeto atually supply a preise answer to the question). In future work,this would ertainly be an interesting question to takle.Constraints are implemented here as formulas in �rst order logiover the values of slots (potentially over both monitor slots and de�n-able slots { though I've foused mainly in de�nable slots in my devel-opment). The atual translation from an utterane of a onstraint toits �rst order logi representation (and the reverse: the generation ofan utterane desribing a onstraint based on its formula) is the re-sponsibility of the dialogue manager. However, as I will disuss laterin the setion on dialogue management, I have provided tools to makea large subset of these translations relatively straightforward { and asdomain-independent as possible. In this setion, I will simply assumethat �rst-order-logi onstraints ome in from the user via a \blakbox" and that utteranes pertaining to them an be mapped diretlyfrom them.2Constraints are assoiated with partiular ativities on the ativ-ity tree. In partiular, eah ativity holds two lists of onstraints: abanned list and a neessary list. Formulas that appear on the bannedlist are those whih should evaluate to false when the ativity is exe-uted. For instane, if the operator were to instrut the system Don'ty high, then the formula orresponding to y high would be added tothe banned list of a partiular ativity. Conversely, the neessary listontains those formulas whih must evaluate to true when the ativ-ity is instantiated. While these lists ould logially be ombined intoa single list, in order to better manage the dialogue and more easilyexpress the onstraints in terms understandable to the operator, theyare separated into the two lists depending on how they were spei�edby the operator.There are two types of onstraints: global onstraints and loal on-straints. Global onstraints apply to all urrent and future ativities1Disjuntive utteranes are not urrently supported by the urrent Dialogue manager,though the onstraint management system desribed here would have no problem handlingthem.2In the CSLI dialogue system, this \blak box" is the Gemini parser/generator[DGA+93℄ whih makes use of a grammar developed at CSLI51



{ for example, the onstraint Always patrol at high altitude is globalin the sense that it should be \applied" to all urrent and future in-stanes of patrol tasks. On the other hand, loal onstraints are thosewhih apply only to a partiular ativity. For example, if the user wereto �rst ommand the heliopter to patrol at the shool, and then tellit to Don't do it at low altitude or Do it at low altitude or low speed {then this onstraint should be applied only to the partiular instaneof the patrol ativity in question.In order to support this distintion between global and loal on-straints, the Ativity Tree implements a system by whih it \triklesdown" the banned and neessary onstraint lists. This trikling downsimply has the e�et that eah ativity, in addition to being subjet tothe onstraints on its own banned and neessary lists, is also subjetto all of the onstraints of its anestors. Moreover, the root of the treeis a speial ativity whih has no slots, but does ontain banned andneessary onstraint lists. The dialogue manager, then, assigns globalonstraints by adding them to the onstraint lists on this root node.When new ativities are instantiated, they then inherit all of the rootnode's onstraints via the trikling down mehanism, and hene aresubjet to global onstraints.For example, onsider the Ativity Tree below. Here, N is the set ofneessary onstraints at a given node, CN is the omplete set of nees-sary onstraints at a given node, inluding those onstraints \trikleddown" from above. Similarly, B is the set of banned onstraints at agiven node, while CB is the omplete set of banned onstraints at agiven node, inluding \trikled down" onstraints from above.root N={n1,n2}, CN={n1,n2}, B={b1}, CB={b1}..at1 N={n3}, CN={n1,n2,n3}, B={}, CB={b1}....at2 N={}, CN={n1,n2,n3},B={b2},CB={b1,b2}..at3 N={n4}, CN={n1,n2,n4}, B={b3}, CB={b1,b3}In addition to the banned and neessary lists, eah ativity also hastwo orresponding lists: the ignoreBanned and ignoreNeessary lists.These lists ontain onstraints that should NOT be inherited fromanestor nodes in the tree. These lists allow for spei� ativities toignore global onstraints (or onstraints expressed over other anestorativities), if the operator instruts that this should be the ase (as inthe dialogue in (11)).Adding these lists (notated IN and IB for ignoreBanned and ig-noreNeessary respetively) to the example above, yields:52



root N={n1,n2}, IN={}, CN={n1,n2}, B={b1}, IB={}, CB={b1}..at1 N={n3},IN={n1},CN={n2,n3},IB={},B={}, CB={b1}....at2 N={},IN={},CN={n2,n3},IB={b1}, B={b2},CB={b2}..at3 N={n4},IN={n2}, CN={n1,n4}, B={b3}, IB={b1}, CB={b3}An example in whih a onstraint would be added to the ignoreNe-essary list is the following:(11) O: Always y high....O: Fly low to the shool please.S: Just a minute...I am supposed to always y high, should I ylow to the shool anyway?O: Yes.S: Okay. [Add \y high" to ignoreNeessary list℄In this ase, the onstraint that the heliopter should always y athigh altitude is relaxed, but only in the ontext of a spei� ativity.If the operator were to later ommand the heliopter to y somewhereelse, the global onstraint of always ying high would still be in e�et.This is beause the ativity tree looks something like this:root N={"fly high"}, IN={}, CN={"fly high"}, .....go (shool) N={}, IN={"fly high"}, CN={}, ...Hene, future desendents of the root will still be subjet to the"fly high" onstraint, however hildren of the go ativity will notlonger have this onstraint \trikled down" to them. This is a ritialdistintion, beause if the onstraint were simply removed from theonstraints list at the root, then it would no longer apply to futureativities.7.3 Examples of onstraintsConstraints are implemented as �rst order logi statements over thevalues of partiular slots { or more spei�ally, over the values of thespei� indies of spei� slots. Consider the formulas in �gure 2 andtheir appearane on either the banned or neessary lists of the root ofthe ativity tree (all are atually supported by the urrent dialoguefront end, exept where noted): 53



Figure 2: Constraints translated to formulas on the banned and neessarylistsneessary:� always y high: [ommand="go" ! toAltitude="high"℄� always y at low speed: [ommand="go" ! toSpeed="low"℄� when patrolling at spring�eld shool, patrol at low altitude:[(ommand="patrol" ^ toLoation="s1") ! toAltitude="low"℄� always y low or fast: [ommand="go" ! (toAltitude="low" _toSpeed="fast")℄ abanned:� never y high: [ommand="go" ^ toAltitude="high"℄� never y at low speed: [ommand="go" ^ toSpeed="low"℄� never patrol at spring�eld shool at low altitude: [ommand="patrol"^ toLoation="s1" ^ toSpeed="low"℄� never y low and fast: [ommand="go" ^ toAltitude="low" ^toSpeed="fast"℄aNot supported by the urrent dialogue manager
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From �gure 2, it is apparent that the sorts of onstraints whih anbe represented are far more powerful than the simple rede�nition of\defaults" disussed in setion 7.2. Indeed, in priniple a onstraintan be an arbitrary �rst-order-logi formula over slots, or slots andpartiular indies. This allows for a relatively wide range of on-straints. The main diÆulty is in onverting from natural language tooherent formulas and bak, but below it will be shown that this anbe done in a relatively domain-independent form for a large numberof interesting ases.It is interesting to note that the onstraints on the neessary listappear in the form of onditionals in whih the ommand (or a-tivity type) is always part of the anteedent. It is ritial to notethat it would be inorret to simply have a onjuntion of slot as-signments appear on the neessary list. For instane, plaing the for-mula [ommand="patrol" ^ toAltitude="high"℄ on the neessarylist would require that all ativities be of type patrol, whih is learlyinorret. Indeed, an important part of translating onstraints fromnatural language to FOL is determining whih slots should appear inthe anteedent and the onsequent respetively. It is here that thedistintion between required and optional slots plays another impor-tant role: when translating onstraints of the form \always ommand"(where ommand is a type ommand that might be given to the sys-tem), the slots whih are required should appear in the anteedentwhile those whih are optional should appear in the onsequene. In-deed, this de�nition is merely the formalization of the more vague dis-tintion I initially presented { that required slots are those whih formthe ore onept of an ativity, while optional slots are those whihde�ne possible parameters of an ativity, but whih do not omposepart of its ore onept.7.4 Constraining Ativities and Interfaing toECLiPSeThere are several problems that need to be solved in the ourse of im-plementing a system of onstraints that an be utilized by the dialoguemanager to engage in relevant dialogue. This projet solves some ofthese problems, but some remain to be dealt with in future work. Firstand foremost is the problem of taking a (possibly) partially spei�edset of slots for an ativity and then applying some appropriate om-bination of defaults and onstraints to �ll in the remaining slots. It55



is when this operation fails that the two other major problems arise.The �rst of these arises when the partial spei�ation itself is inon-sistent with the urrent onstraint set. In this ase, the system needsto determine whih set of onstraints has been violated and reportthis to the operator. The seond of these ours when a default valuean't be assigned to a slot beause it would violate a onstraint, butthe onstraints are not spei� enough to require a single partiularvalue for the slot. Essentially, the ombination of the onstraints andthe partial spei�ation of an ativity do not uniquely de�ne a singleativity.For example, onsider the following three sample dialogues below(with dialogue moves noted in brakets):(12) O: Always y high. [speify global onstraint℄...O: Fly to the shool please. [ommand℄S: Now ying high to the shool at medium speed. [report℄(13) O: Always y high. [speify global onstraint℄...O: Fly low to the shool please. [ommand℄S: Just a minute...I am supposed to always y high, [report onstraint violation℄should I y low to the shool anyway? [relax onstraint y/nquestion℄O: Yes. [y/n answer℄S: Okay. [on�rmation℄(14) O: Never y at medium altitude. [speify global onstraint℄...O: Fly to the shool please. [ommand℄S: What altitude should I y at? [slot value query℄O: Low altitude. [slot value answer℄S: Okay....S: Now ying low to the shool at medium speed.In order to failitate these dialogues, the dialogue system must beapable of arrying out the following algorithm:
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Algorithm: CONSTRAINT DIALOGUE GAMES1. Calulate the number of possible ativities that are definedby the ombination of the partially speified ativity, theonstraints over that ativity, and the default slot valueswhih an be assigned without violating onstraints. Let thisnumber be w.2. IF w = 1 THEN suess has been ahieved and an ativity hasbeen uniquely identified (as in (12))3. IF w = 0 THEN determine the most informative set ofonstraints has been violated and report it to the operator(as in (13))4. IF w > 1 THEN determine whih slot(s) are underspeified andspawn a relevant information-seeking dialogue (as in (14))In order to supply the dialogue manager with the neessary infor-mation, I made use of ECLiPSe ([WNS97℄, [ACD+02℄), a onstraint-based solver that extends Prolog. In order to interfae ECLiPSe tothe existing CSLI Java-based infrastruture, ECLiPSe was run as anembedded proess within the CSLI Dialogue Manager (see [NSSS02℄for tehnial details of how this is aomplished).ECLiPSe solves onstraint satisfation problems by taking the fol-lowing steps:First, eah variable must be assigned a partiular domain. Thedomain of a variable an be an integer or real number range, or apartiular set of atomi values.. For example, to set the domain of thevariable X to be fhigh;medium; lowg the following onstrut is used:X :: [high;medium; low℄Next, onstraints are delaratively de�ned in terms of the values ofthe variables. For example, to onstrain X suh that it an only takeon the set of values fhigh; lowg, we delare the following onstraint:(X #= high) #_ (X #= low)where #=, for example, indiates the assignment prediate. Finally,we ask ECLiPSe to produe all sets of labellings of variables assignedto values, suh that the onstraints are satis�ed.The onstraint management system, then, makes use of ECLiPSe57



by assigning eah index of eah slot a partiular variable, issuing on-straints over these variables, and then asking ECLiPSe to return theset of all possible labellings suh that the onstraints are satisi�ed.As mentioned above, eah index of eah slot is assigned a uniqueString whih identi�es the name of the variable whih will be usedin ECLiPSe to onstrain that partiular slot+index. The �rst step,then, is to set the domain of eah of these variables. The domainof eah variable is originally set by the system designer as part ofthe reipe sript: reall that eah slot is assoiated with a partiulartype, and that eah type is assigned a partiular domain when it is de-lared. During the reipe \ompilation" proess, eah slot's domain isdetermined and a bit of ECLiPSe ode that de�nes a prediate alledset domain is generated in a �le alled domains.el whih assigns eah\elipse variable" that orresponds to a slot+index to the domain ofthe type assoiated with the slot. This prediate is loaded at runtime,and alled as the �rst step in the onstraint-satisfation proess.Next, eah onstraint from the relevant ativity's banned and nees-sary lists (as well as those onstraints inherited from anestors, but noton the ignored list) must be translated into the appropriate ECLiPSeonstraints. Reall that eah onstraint is expressed as a FOL expres-sion over the values of slots { either over the value of all indies of apartiular slot, or over the value of a partiular index of a partiularslot. In the ase where a onstraint is over a partiular slot+index,the translation into ECLiPSe is straightforward. The appropriatevariable name that orresponds to that slot+index is identi�ed, andthe onstraint is output in terms of that variable. However, when aonstraint is meant to apply aross all indies in a partiular slot, theproess is not as simple.In this ase, the most straightforward approah would be to simplyapply the onstraint aross all indies of the slot. This proves prob-lemati, however. Consider, for example, the basi y ativity in theWITAS system { alled go. This ativity ontains the slot toLoation,whih atually has three indies (whih means that the ativity anbe used to y to three loations in sequene). It is a ommon o-urene, however, for only the �rst of these indies to be spei�ed; forinstane, if the operator gives the ommand \y to the hospital" thenonly the �rst index of toLoation will be assigned a value. In this ase,we don't want to fore the uninstantiated seond and third indiesto be assigned values, sine the minimum length in the reipe sriptrequired of toLoation is set to be 1. In pursuit of this, we assign the58



speial value `null' to the variables that orrespond to the seond andthird indies of toLoation. In order to allow this assignment, `null'is inluded as a possible value in the domain of every variable { forvariables that we atually want to have assigned a value, we stipulatethe additional onstraint that that variable's value annot be equalto `null' when alling ECLiPSe. The basi assumption, then, is thata onstraint applies over all the indies of a slot up to its minimumlength, and those beyond its minimum length whih are atually �lledin. This basi assumption, however, must be modi�ed when we exam-ine a senario in whih the operator has ommanded the system to\y to the tower then the shool." In this ase, the above algorithmworks �ne for assigning onstraints to the slot toLoation, however itruns into problems when we attempt to assign onstraints to the val-ues of indies of toSpeed and toAltitude. Both of these slots are meantto be \parallel" to toLoation in the sense that the values at orre-sponding indies in the three slots are passed together to the atomiativity fly atom. In this example, the seond value of toLoation is"shool", and whatever values are assigned to the seond index oftoSpeed and toAltitude respetively will ontrol the way in whih theheliopter ies to the shool, but not the tower.3 As suh, we needto indiate both the �rst and seond indies of toSpeed and toAltitudeshould be subjet to onstraints and assigned values, even though byour basi assumption above we would only end up requiring that the�rst index of both toSpeed and toAltitude be assigned values, sinethe minimum length of eah slot is 1 and all indies of eah slot areunassigned.Sine this sort of parallelism is domain dependent, the onstraintmanagement system de�nes a allbak method getSlotMaxLengthFor-Constraint() whih takes as parameters the name of the slot and theinstane of CSLI AtivityProperties whih that slot omes from. Thisallbak method is a part of CSLI AtivityBase and its default im-plementation is to follow the basi assumption given above. Superlasses of CSLI AtivityBase should de�ne this method if the defaultimplementation is insuÆient. In the ase of the WITAS system, thismethod is overridden suh that when the slot in question is toSpeedor toAltitude, the maximum number of indies to be onstrained is3While this system of parallel slots may seem overly omplex at �rst, it arises fromthe need to be able to interpret ommands like \y to the tower at low speed and to theshool at high speed" 59



alulated based on the ontent of toLoation. This allbak methodallows arbitrarily omplex relationships to hold between di�erent slotswhile at the same time it frees the onstraint management system fromhaving to understand these onstraints.4With this allbak method in hand, the sytem now has a means oftranslating from onstraints over slots and their values to a meaning-ful representation in ECLiPSe. Constraints are assigned to the �rst nindies of the slot, where n is determined by alling getSlotMaxLength-ForConstraint(). For onstraints whih are over multiple slots, this ex-pansion must our reursively. Finally, if the onstraint omes fromthe banned list, then it must be negated { sine ECLiPSe supportsonly onstraints whih neessarily must be adhered to. In the follow-ing example, I will show the results of this proess on a few onstraints,given the spei�ed partially instantiated CSLI AtivityProperties andassuming that the relevant ECLiPSe variables assigned to the zeroethindex of toLoation is ToLoation0, and similarly for other slot+indexpairs:Given Ativity Properties with the following slots spei�ed (\y tothe tower then the shool"):ommand = gotoLoation[0℄ = towertoLoation[1℄ = shoolThe neessary onstraint \always y high" ommand = go! toAltitude =high yields the set of onstraints:Command#=go #--> ToAltitude0#=highCommand#=go #--> ToAltitude1#=highThe banned onstraint \never y high" ommand = go^ toAltitude =high yields the set of onstraints:4An interesting bit of future work would be to make some of this knowledge delarativeand inlude it in the reipe sript. For instane, parallel slots in the sense de�ned in thispaper ould be delared as suh and this knowledge ould then be automatially integratedinto the dialogue manager. As we will see later, this knowledge also plays a key role inthe Noun Phrase resolution proedures whih need some domain knowledge about therelationships between slots in order to work properly60



:(Command#=go #^ ToAltitude0#=high):(Command#=go #^ ToAltitude1#=high)Finally, the partially spei�ed ativity is onvered into onstraintsas well. This is a straightforward proess: all values that are as-signed in the ativity are onverted to simple equality onstraints ofthe form: SlotIndexVar #= value, where SlotIndexV ar is the ap-propriate variable that orresponds to the slot+index in question, andvalue is that value that has been assigned to that slot+index. At thispoint, we an simply query ECLiPSe for the set of all suitable sets ofvariable assignments that satisfy the onstraints.7.4.1 Dealing with DefaultsIn order to atually determine how a partially spei�ed ativity shouldbe properly instantiated, there is another aspet of the problem toonsider: defaults. Eah slot whih is not linguistially spei�ed bythe operator (or inferred diretly from the operator's ommands), mayhave a suitable default value. As disussed above, default values forslots are delared as part of the reipe sript. The simplest way ofdealing with defaults would be to simply assign them appropriatelyto all slots that have not been already assigned a value, and then runthe resulting ativity spei�ation through ECLiPSe to determine if itmeets the onstraints set out by the operator. This approah, however,is learly unsatisfatory. Consider the following dialogue that mightemerge from suh an algorithm, assuming that the default speed atwhih to y is set to medium:(15) O: Always y at high speedS: Okay...O: Fly to the towerS: Just a minute ...I am supposed to always y at high speedShould I y to the tower at medium altitude and medium speedanyway?As the above dialogue illustrates, if we were to assign defaults toall unspei�ed slots BEFORE alling ECLiPSe, then the onstraintsset out by the user an't be used to �ll in unspei�ed slot values towhih they pertain { in this ase, the toSpeed slot.61



To solve this problem, the following algorithm is used:Algorithm: CONSTRAIN INSTANTIATIONSGiven: a partially speified ativity, P.1. Consider the finite set of slots+indies whih an potentiallybe assigned a default value given a partiular partialativity speifiation; all this set of slot+index to valueassignments S.2. Consider eah subset s � S in order from largest to smallest,assign the slot+index to value assignments in s to P, yieldingP 0.(a) Send P 0 along with the neessary and banned onstraints toECLiPSe to yield W: the set of all legal assignments ofvalues to variables in P 0.(b) If jW j = 1, sueed and return W.() If jW j > 1, retain W and ontinue iterating. If futureiterations do not sueed, return W.(d) If jW j = 0, ontinue iterating. If this is the lastiteration, and there are no previously retained Ws, thenfail.This algorithm tries to �nd the largest number of defaults that anbe assigned to yield a single legal (subjet to the onstraint set) fully-instantiated ativity (all de�nable slots �lled with a value). It prefers,however, to �nd exatly one fully spei�ed ativity in a set to assigningas many defaults as possible. If, after not assigning any of the defaults,it still an't �nd any possible instantiations, then it fails beause thepartially spei�ed ativity itself must violate the onstraint set. If ex-atly one legal instantiation is found at any point, then the algorithmsueeds immediatly and returns this result. If there are always morethan one possible instantiations, then the algorithm prefers the setthat arises from instantiating as many default values as possible.If the algorithm sueeds in �nding a single possible instantiaton,then the dialogue manager aepts this instantiation and goes aheadand requests that the ativity be exeuted. If there are zero possibleinstantiations, then the dialogue manager reports that the partiallyspei�ed ativity violates the onstraint set. Moreover, the onstraint62



management system allows the dialogue manager to request whih setof onstraints were violated, so that it an inform the operator (moreabout this in the next setion). If there are multiple possible instanti-ations, then the dialogue manager engages the user in an informationseeking dialogue { spei�ally, it determines whih slot+indies an-not be assigned a unique value based on the onstraints, and asksthe operator to supply values for these slots. An example of suh adialogue appears in (14).Note, that just as we used the method getSlotMaxLengthForCon-straint() above to deal with the ase of so-alled parallel slots, a similarmehanism must be used for defaults as well. Consider that if two lo-ations are spei�ed to whih the heliopter should y (in the WITASsystem), then we should onsider the �rst two indies of the slots oftoLoation and toSpeed when assigning defaults. In pursuit of this, aallbak method alled getSlotMinLengthForDefault() is de�ned whihreturns the minimum number of indies in a given slot whih ought tobe assigned default values (if possible).7.4.2 Determining whih set of onstraints has been vi-olatedIn the ase where the partial ativity spei�ation supplied by theoperator is determined to violate the urrent onstraint set, the on-straint management system provides a means for the dialogue man-ager to determine spei�ally whih subset of the onstraint set wasviolated. This allows for dialogues like the one in (13).Of ourse, it is simple to �nd one easy solution to the question ofwhih set of onstraints was violated: all of them. If we were to removeall onstraints, then the partially spei�ed ativity would not violateany onstraints at all! The onstraint management system aims to�nd the most informative subset of onstraints that were violated; inthis ontext, this means the smallest subset of onstraints. While it istehnially true to say that if we removed both the onstraints \alwaysy high" and \always y at high speed" then the ommand \y tothe tower at high speed and low altitude" would beome legal { butthis is not nearly as useful as determining that only the onstraint\always y high" is the one that is atually ausing the problem. Assuh, the system tries to �nd the smallest subset of onstraints whihneed to be removed in order for the partial ativity spei�ation to beallowable (it does not, however, prefer one subset of onstraints over63



another if both sets are the same size { in this ase, it merely reportsthe subset that it �nds �rst).In order to determine whih set of onstraints was violated, wesimply iterate over all possible subsets of the onstraint set and �ndthe largest one whih doesn't prohibit the partially spei�ed ativity.The algorithm is as follows:Algorithm: FIND VIOLATED CONSTRAINTSGiven: a partially speified ativity, PGiven: the set of all banned and neessary onstraints, CFor i = 1 to jCj fFor eah subset  � C suh that jj = i f1. Let Q = C � 2. Send P along with the onstraint set Q to ECLiPSe toyield W: the set of all legal assignments of valuesto variables in P.3. If jP j = 0 return ggWith the set of violated onstraints in hand, the dialogue manageran produe dialogues like the one in (13).7.5 Maintaining a Consistent Set of ConstraintsWhen humans use natural language to speify and understand on-straints, they are not always expliit about ertain underlying assump-tions that they make. For instane, onsider the following two setionsof two di�erent dialogues:(16) a. O: Always y high.S: Okay....O: Always y at low speed.S: Okay.b. O: Always y high.S: Okay. 64



...O: Always y low.S: Okay.At the syntati and semanti levels, there is nothing to distinguish(16a) from (16b); however, they are atually quite di�erent. In (16a)there is an impliit \and" between eah onstraint spei�ation { thatis, the sequene of utteranes is meant to speify a onjuntion of on-straints. By speifying the seond onstraint, the operator meant toadd an additional onstraint. In onstrast, in (16b), the operator �rstspei�ed one onstraint and then impliitly hanged this onstraintlater. Hene, in this ase, at the end of the dialogue there should onlybe a single onstraint in e�et, namely: \always y low." We mightsay that there is an impliature whih must be alulated by the utter-ane of the seond onstraint spei�ation in (16b) whih doesn't existin (16a), namely that the previous onstraint spei�ation should beanelled.If suh impliatures are not understood by the dialogue system,then the set of onstraints it maintains is in danger of beoming in-onsistent in a sense that will be explored here. Continuing the ex-ample in (16b), if the dialogue manager were to fail to simply addboth onstraints spei�ed by the user to the neessary list, then thelist would ontain both of the following onstraints:(17) 1. ommand="go" ! toAltitude="low"2. ommand="go" ! toAltitude="high"If this set of onstraints were passed to an ECLiPSe in order to in-stantiate a partially instantiated ativity like \y to the shool," thenECLiPSe would be unable to fully instantiate the ativity due to theinonsistany in the onstraint set.Despite this diÆulty, these two onstraints are not logially inon-sistent in the sense that a formula suh as A ^ :A is. While A ^ :Adesribes a situation whih annot be satisi�ed in any possible world,the onstraints in (17) are not so prohibitive; for example, we ouldalways simply hoose an ativity besides go { we might take a pitureof a ar, for example. As suh, the property of onsisteny we areafter for the onstraint set is not that of logial onsisteny, but some-thing I'll all ommonsense task onsisteny in this disussion. Thehallenge for the onstraint management system, then, is to identifywhen the seond utterane in onstraint ommand pairs like the ones65



in (16) gives rise to an impliature, so that ommonsense task onsis-teny in the set of onstraints an be maintained. In the ontext ofthe onstraint management system developed here, this means thatwhen new onstraints are spei�ed, the existing onstraint set mustbe searhed for onstraints whih should be removed.5 For the ase inwhih onstraints are truly arbitrary �rst-order-logi expressions, thisis an inredibly diÆult problem however. However, as we have seen,the range of onstraints people are atually likely to give (whih anatually be translated to FOL) is onstrained suh that only ertainpatterns are likely to emerge. Given this more limited problem, ertainpatterns whih give rise to impliatures an be identi�ed and then theonstraint management system an look for these patterns to maintaina onsistant onstraint set. For the CSLI dialogue manager, the set ofimpliature patterns whih needed to be reognized by the dialoguemanager in order to keep the onstraint set onsistent (suh that itonly ontained onstraints whih ould atually be dealt with by thesystem) was identi�ed { they are given in �gure 3. In these patterns,the �rst formula orresponds to the �rst onstraint-spei�ation ut-terane in a dialogue and the seond orresponds to the seond. Notethat we take advantage of the fat that items on the banned list inthe form A ^B an be rewritten as neessary onstraints of the formA! :B. When this rewrite is done, the assumption is made that thede�nable slots should appear on the left, and the optional slots shouldappear on the right hand side.The example patterns in �gure 3 illustrates ases where the on-straint in the �rst line is replaed by the onstraint in the seond line.These patterns are limited to ases in whih only 1 or 2 onjunts aregiven. Of ourse, in a real system, these formulas should be general-ized to instanes in whih 3 or more onjunts appear { and, indeed,in the CSLI system suh a generalization has been made. Where asingle onjut ours in ontrast to two earlier onjunts (as in, forexample, the pair: [A = a ^B = b℄ ! C = 1 and A = a ! C = 2),the more general ase is one in whih the seond set of onjunts area subset of the �rst (here, fAg � fA;Bg).In the urrent onstraint management system, all neessary on-straints are broken down into their simplest form before being addedto the neessary list. That is, a potentially omplex onstraint like yto the tower at high speed and at high altitude is onverted into two5Or at the very least, whih the dialogue system ought to bring up in some lari�ationsubdialogue aimed at determining what the operator really meant66



Figure 3: Impliature Patterns1. (A = a ^ B = b)! C = 1e.g. Always y to the tower at high altitude.(A = a ^ B = b)! C 6= 1e.g. Never y to the tower at high altitude.2. (A = a ^ B = b)! C = 1e.g. Always y to the tower at high altitude.(A = a ^ B = b)! C = 2e.g. Always y to the tower at low altitude.3. (A = a ^ B = b)! C = 1e.g. Always y to the tower at high altitude.A = a! C 6= 1e.g. Never y at high altitude.4. (A = a ^ B = b)! C = 1e.g. Always y to the tower at high altitude.A = a! C = 2e.g. Always y at low altitude.5. (A = a ^ B = b)! C 6= 1e.g. Never y to the tower at high altitude.(A = a ^ B = b)! C = 1e.g. Always y to the tower at high altitude.6. (A = a ^ B = b)! (C = 1 ^D = d1)e.g. Always y to the tower at high altitude and high speed.(A = a ^ B = b)! C 6= 1e.g. Never y to the tower at high altitude. 67. (A = a ^ B = b)! (C = 1 ^D = d1)e.g. Always y to the tower at high altitude and high speed.(A = a ^ B = b)! (C 6= 1 ^D 6= d1)e.g. Never y to the tower at high altitude and high speed.8. (A = a ^ B = b)! (C 6= 1 ^D 6= d1)e.g. Never y to the tower at high altitude and high speed.(A = a ^ B = b)! (C = 1 ^D = d1)e.g. Always y to the tower at high altitude and high speed.67



onstraints representing y to the tower at high speed and y to thetower at high altitude respetively. More formally, given the onstraintgiven in (18), the two onstraints in (19a) and (19b) are atually addedto the neessary list.(18) ommand= "go" ! (toSpeed = "high" ^ toAltitude = "high")(19) a. ommand = "go" ! toSpeed = "high"b. ommand = "go" ! toAltitude = "high"As suh, the algorithm in �gure 4 has been implemented to identifyonstraints in the urrent set whih should be removed given a newonstraint spei�ed by the operator. This algorithm makes use of thefollowing simple helper funtions:� isNe() whih simply returns true i�  is on the neessary list(or is supposed to be added to the neessary list)� diff assign(r1; r2) returns true i� r2 ontains an assignment toa slot given in r1, but the value assigned to that slot is di�erent.For example, if r1 was fA = a1g and r2 was fA = a2; :::g thenthe funtion would return true.� same assign(r1; r2) returns true i� r2 ontains an assignment toa slot given in r1, and the value assigned to that slot is the same.For example, if r1 was fA = a1g and r2 was fA = a1; :::g thenthe funtion would return true.8 Algorithms for the Dialogue Man-agerI will not disuss here the full details of the CSLI dialogue manager;I refer the interested reader to [LGP02℄. Instead, I will disuss theinterfae provided by the ativity modeling and onstraints/defaultssystem and the servies that any dialogue manager wishing to be en-abled with it must provide. Fuerthmore, I will disuss algorithmswhih have been implemented in the CSLI dialogue manager whihtake advantage of the framework disussed in this paper in order tofailiate more natural dialogues between the human operator and thedevie. The system is built in suh a way that there is nothing thatties it by neessity to the details of the CSLI dialogue manager; itdoes not rely on any one partiular theory of disourse representation,68



Figure 4: Algorithm for deteting impliaturesAlgorithm: FIND CONFLICTING CONSTRAINTS DUE TO IMPLICATUREGiven: a new onstraint, n to be added to the onstraint setGiven: the set of all banned and neessary onstraints, C,onverted to anonial formaLet I be an initially empty set to hold the onstraints Cwhih are found to be inonsistent with n.For eah  2 C fLet r be the set of equality statements on the right sideof Let l be the set of equality statements on the left side of Let rn be the set of equality statements on the right sideof nLet ln be the set of equality statements on the left sideof nIf ln � l fIf((isNe() ^ isNe(n) ^ ln � l ^ diff assign(rn; r))_(isNe() ^ :isNe(n) ^ jrnj = 1 ^ same assign(rn; r))_(:isNe() ^ isNe(n) ^ rn � r)) f Add  to I, if  =2 IggIf(isNe() ^ :isNe(n) fLet Ca be the set of o 2 C suh that l = loLet rCa be S roIf(rn � rCa) fAdd  to I, if  =2 Iggg aWhere anonial form orresponds to the form of onstraints given in �gure 3. Thatis, all neessary onstraints are of the form (A = a^ : : :^B = b)! (C = ^ : : :^D = d)and all banned onstraints are in the form (A = a^ : : :^B = b)! :(C = ^ : : :^D = d)69



any spei� set of algorithms for proessing or produing disourse, orany partiular parser or grammar. That said, it is up to the dialoguemanager to provide these servies.The system provides several apabilities that a dialogue systemshould interfae to, inluding: a means of representing the relationshipbetween di�erent ativities that are urrently being exeuted, havebeen exeuted, or whih are planned; the appliation of onstraintsand the ability to determine whih onstraints are problemati; anda representation of whih slots are pertinent to an ativity in variousstates. It also depends on the dialogue manager for several abilities,inluding: interpreting ommands and onstraints in natural language;the generation of reports about an ativity based on its slots and theirvalues as well as the generation of onstraints in natural language; andknowledge about whih slots may be \parallel." In this setion, I willdisuss eah of these items and how they have been handled by theCSLI dialogue system.78.1 Translating Commands from Natural Lan-guage into Ativity RepresentationsI've de�ned ativities in this paper in terms of an ativity type anda set of slots some of whih are �lled in with partiular values. I'vesaid nothing about how to translate ommands like Fight the �re atthe tower into these representations, or how to generate from themreports like Now ying low to the tower at high speed. In the CSLIdialogue manager, user utteranes are parsed and system utteranesare generated using a bi-diretional uni�ation grammar written usingSRI's Gemini system [DGA+93℄. The grammar for the CSLI dialoguemanager has been hand-designed to be used for the ommand andontrol of mobile robots. I will not disuss the grammar here in detail,but suÆe it to say that the dialogue manager deals only in the logialforms that are produed by the grammar and never with the atualsurfae string.The logial forms for ommands and reports generally break themdown into their verb and the verb's argument PPs and NPs, as would7I am indebted to Oliver Lemon, Laura Hiatt, Randolph Gullett, and Elizabeth Brattfor the hard work they have put into many areas of the dialogue system, inluding many ofthose elements that were neessary for interfaing to the ativity modeling and onstraintservies I've disussed in this paper. Muh of the work disussed in this setion on thedialogue manager side of things was atually implemented by them.70



be expeted. For example, the logial form for deliver the medialsupplies to the shool is:[ommand([deliver℄,[param_list([arg([np([det([def℄,the),[n(medial_supplies,pl)℄℄)℄),[pp_lo(to,arg([np([det([def℄,the),[n(shool,sg)℄℄)℄))℄℄)℄)℄Similarly, the logial form for Fly to the tower and the shool at highspeed is:[ommand([go℄,[param_list([[pp_lo(to,arg(onj,[np([det([def℄,the),[n(tower,sg)℄℄)℄,[np([det([def℄,the),[n(shool,sg)℄℄)℄))℄,(speed),value(high)℄)℄)℄)℄Given logial forms like these, the Dialogue Manager must gothrough two steps to translate it into a ativity desription. First,it must pull apart the arguments into the appropriate slots for theativity type. Seond, it must \resolve" the NPs to determine whatatual objets in the world they refer to.In the CSLI dialogue manager, the CSLI Ativity lass suppliedby the devie interfae is sublassed by CSLI Task so that extra in-formation an be added on to eah ativity. Of interest here is thatorresponding to any de�nable slot whih an be desribed in terms ofan NP (for instane, toLoation might orrespond to the NP \spring-�eld shool"), CSLI Task de�nes a slot to hold the NP assoiatedwith that slot { for instane, toLoationNP. The dialogue manager�rst pulls out the NPs for eah ommand that belong in a slot andputs them in the orresponding NP slot. It also pulls slot values whiharen't parsed as NPs, but rather as \mods" { modi�ers suh as \athigh speed" { and puts them diretly in their orresponding slots, forinstane toSpeed.Next, eah NP is \resolved" through either dialogue ontext ofdatabase lookups to an atual entity in the world. If no suh entity71



an be found or multiple possible mathes are found, then the dialoguemanager initiates information seeking dialogues with questions likeWhih tower do you mean? and Where is the pond?. One the NPsare resolved, the IDs of their referents are plaed in the orret slots{ for example, the id of the referent of arryObjetNP is plaed inarryObjet. Reall that the fat that it is the identi�er of the referentthat must be stored in a partiular slot when determined in the reipesript when that slot was determined a type, whih had a partiulardomain. Hene, what sort of value is atually stored in eah slot anbe determined on a domain-spei� basis.If some of the required slots still need values at this point, then thedialogue manager presents information-seeking questions, like Whereshould I y to? to the operator. One all of the required slots havebeen �lled in, the ativity's state is set to resolved, at whih pointthe onstraint and defaults management system kiks in and tries tofully instantiate the ativity aording to the urrent onstraint set.8.2 Translating Constraints from Natural Lan-guage into Logi ExpressionsCurrently, the CSLI dialogue system an understand onstraints suhas: � Always/Never y at high speed.� Always/Never patrol at the tower at low altitude.� Always/Never y high and fast.Essentially, the system an understand any normal ommand inputpre�xed by either always or never. This is beause the algorithm ituses to translate these onstraints into logi expressions is based onthe algorithm above for translating ommands in natural language toativity/slot representations. For example, always patrol at the towerat high altitude is simply interpreted by passing the patrol at the towerat high altitude through the ommand parser and making note with aag that it was a global onstraint. Then, the slots whih are �lled inare turned into a onstraint where all of the required slots appear onthe left hand side of the impliation and the optional slots on the righthand side, as disussed above. I note again, here, the importane ofthe distintion between required and optional slots.72



8.3 Translating ativities and onstraints intonatural languageThe proess of going from an ativity to natural language basiallyinvolves going through eah slot and hoosing an appropriate nounphrase, prepositional phrase, or other modi�er to represent that slot.Eah slot is marked in the dialogue manager either as being one of a PPslot, an NP slot, or a modi�er slot in the ontext of partiular ativitytypes. An appropriate phrase is hosen by the dialogue system basedon the ontents of the slot, and then all of the phrases are assembledto reate an appropriate logial form. As I mentioned above, in thereipe sript di�erent slots an be assoiated with eah ativity state.Hene, depending on the state of the ativity, or the intent of theutterane (is it to be used for a question or a report, for instane),di�erent set of slots may be used to generate the natural language todesribe the ativity.To translate a onstraint into natural language, it is �rst on-verted into an ativity representation with the appropriate slots �lledin whih are overed by the onstraint. Then, this is onverted toa logial form and embedded inside the appropriate logial form forthe various sorts of onstraints { for instane, it is embedded insidea di�erent form depending on whether it ame from the banned orneessary list and whether it is a global or loal onstraint.8.4 Avoiding Mode ConfusionA major problem faing a dialogue system for ontrolling devies is theproblem of deiding when hanges in the state of the world should bedesribed to the user. In order to avoid mode onfusion, it is impera-tive that the operator's beliefs about the state of the world suÆientlymath the atual state of the devie. For instane, if the devie hassuessfully ompleted an ativity that it was pursuing, then the op-erator needs to be informed of this so that he or she maintains anaurate mental model of what the devie is doing. If the devie doesnot keep the operator abreast of its state, then inomprehensible dia-logues like the following might ensue:(20) O: Fly to the shool and look for a red ar.S: Now ying to the shool...and looking for a red arHeliopter �nishes ying to the shool but says nothing73



O: Canel ying to the shoolThe above is just a small example of the sorts of problems that mayour if the operator does not maintain a onsistent piture of the stateof the world that mathes reality and the mental state of the devie.In this setion, I disuss the tehniques developed as part of the CSLIdialogue manager for avoiding mode onfusion; in partiular, I fouson how these methods are failitated by the representation a�ordedby Ativities, the Ativity Tree, and Constraint Management System.8.4.1 Announing State ChangesThe Dialogue System must somehow deide when to make announe-ments about when the state of the world has hanged. The AtivityTree provides one mehanism by whih the dialogue system an makeintelligent deisions about what hanges in the world are onversa-tionally appropriate, and whih need not be mentioned. Wheneverthe state of an ativity on the tree hanges (for instane from plannedto urrent), the dialogue manager is noti�ed of this update and anhoose whether or not to announe this hange in state. The simpleststrategy is to announe every state hange of every ativity; however,this leads to some odd dialogue sequenes. Consider, for instane, thea simple ase from the WITAS system in whih the heliopter iesfrom base to the shool. Just before reahing the shool, the ativitytree looks like this:root..go (to shool) [urrent℄....take_off [done℄....fly_atom (to shool) [urrent℄Upon reahing the shool, �rst the fly atom ativity beomes doneand then, in turn, the go ativity beomes done as well. Yielding �rstthis ativity tree:root..go (to shool) [urrent℄....take_off [done℄....fly_atom (to shool) [done℄And then this one:root 74



..go (to shool) [done℄....take_off [done℄....fly_atom (to shool) [done℄If the poliy were to announe the state hange of eah node, thesystem would make the following announement:(21) S: I have own to the shool. [orresponds to y atom node℄S: I have own to the shool. [orresponds to go node℄Indeed, it would end up making the same announement twie ina row! In order to avoid this, we might deide to only make an an-nounement when a leaf of the tree hanges in state, as leaves arethe ativities whih are atually exeuted. However, this may lead tosystem announements whih do not ontain as muh information asthey ought to. Consider the situation in whih the system is trans-porting the medial supplies from the hospital to the shool. Justbefore ompleting this ativity, the ativity tree looks like this:root..transport (medial supplies) (from hospital) (to shool) [urrent℄....pik_up (medial supplies) (from hospital) [done℄......go (hospital) [done℄........take_off [done℄........fly_atom [done℄......pik_up_objet (medial supplies) [done℄....deliver (medial supplies) (to shool) [urrent℄......go (shool) [done℄........take_off [skipped℄........fly_atom (shool) [done℄......drop_objet (medial supplies) [urrent℄When drop objet is ompleted, it will beome done and thendeliver will beome done, and �nally transport in turn will beomedone. Here, however, it is desirable to announe not only that themedial supplies have been dropped, but that this indeed onludesthe deliver and transport ativities { without this information, theoperator may beome onfused as to the state of the robot. Thedesired dialogue, then, is something like the following:(22) S: I have dropped the medial kit.S: I have delivered it to the shool.S: I have transported it from the hospital to the shool.75



In order to allow for this type of dialogue, the poliy whih hasbeen implemented is that the ompletion of an ativity is announedunder the following onditions:1. The ativity is a leaf node2. The ativity is not a leaf, but it has a di�erent Natural LanguageMapping from its last hild.8.4.2 Filtering Against the State of the WorldThe CSLI Dialogue Manager makes use of a relatively ommon teh-nique in dialogue managers that deal with omplex systems in thatit employs a generation manager whih stores potential system utter-anes in a queue and then, when an appropriate point in the onversa-tion arises for the system to make an utterane (or an utterane is ofa ritial enough nature that the system should barge in and utter it,no matter what), the generation manager hooses an appropriate ut-terane from the queue and utters it.8 In the CSLI Dialogue Manager,this queue is referred to as the System Agenda.Whenever the dialogue manager makes the deision that it is ap-propriate to announe the state of an ativity, using the algorithm dis-ussed in (8.4.1) above, the utterane desribing the partiular ativityand its state is added to the System Agenda. Eventually, the gener-ation omponent will have a hane to examine the System Agendaand deide how to realize eah utterane linguistially, and whetheror not the utterane should be atually be uttered by the system atall. In the situations that the Ativity Modeling System desribed inthis paper has been designed for, it's possible that by the time it'sappropriate for the generation omponent to realize an utterane onthe System Agenda, this utterane may no longer be relevant { orworse, it may atually represent a laim that is no longer true. Suhtime delays have tended to our on a regular basis with the dialoguesystems we have developed, mainly beause in the seonds it takes foreither the operator or the system to make one or a few utteranes, theativities being monitored may have hanged signi�antly in nature.8This is a very brief overview of how the generation omponent in the CSLI DialogueManager works; geneeration is, in fat, relatively omplex. For example, it will introdueanaphora and ellipsis into the utteranes in its queue, in order to �t them better into theurrent onversation. Suh funtionality has no bearing on the disussion here, as thealgorithm disussed here will bene�t any dialogue management system whih makes useof a queue to store potential utteranes. 76



A quite ommon example is that while sometimes it may take adevie a few seonds (or even minutes) in order to plan an ativity,sometimes this proess is nearly instantaneous. However, during theinstant when the ativity swithes to a state of sent (and is sent tothe planner), the dialogue system doesn't automatially know if thisstate will take a few minutes, seonds, or milliseonds. As suh, itimmediately plaes a logial form for an utterane of the form Nowplanning to X on the System Agenda, where X is a desription of theativity in question. It may be, however, that just a few milliseondslater, before the generation omponent has even started to proess theSystem Agenda,9 that the state of the ativity in question is hangedto urrent by the planner, whih has made its plan and begun ex-euting the ativity. In this ase, when the generation omponentproesses the system agenda, it will be inaurate for it to announeNow planning to X, beause it's atually the ase that the system isurrently doing X.The top utterane on the System Agenda, then, is not really re-etive of the state of the devie. Indeed, if the system were to utterit, mode onfusion would surely arise. As suh, the generation ompo-nent of the CSLI Dialogue Manager employs a �ltering mehanism, inwhih all utteranes regarding a partiular ativity are heked againstthe urrent state of that ativity on the Ativity Tree before they areuttered. If the utterane desribes the ativity as being in a statewhih is no longer orret, then the utterane is �ltered out { it isdisarded, never atually uttered by the system. Aording to thisalgorithm, the above problem is solved by disarding the logial formorresponding to Now planning to X and then later atually realizingan utterane like Now Xing.The real power of this approah an be seen by examining a moreomplex example from the WITAS domain, in whih the devie (theheliopter) hanges its state quite quikly and rather signi�antly.Consider the ase in whih the operator gives the ommand: y tothe shool and look for a red ar. Now imagine that right after theheliopter takes o� and just as it begins ying to the shool, it sees ared ar. In the WITAS domain, the ativity of �nd whih orrespondsto the operator's ommand of look for, spei�es that one an objet9In the CSLI Dialogue Manager, the generation omponent tends to wait for the systemto \settle down" before it proesses the System Agenda { that is, it tends to wait for aseries of swift updates about the state of the devie to omplete before it proesses theSystem Agenda 77



mathing the desription given by the operator is spotted, it shouldbe traked (kept in view). However, in order to do this, the helioptermust suspend ying to the shool, sine it an't both trak the arand y to the shool at the same time. To sum up, the Ativity Tree(abbreviated below), goes through the following on�gurations:(23) Taking o� and looking for a red arAtivity Tree:root..go (to tower) [urrent℄....take_off [urrent℄..loate (red ar) [urrent℄System Agenda: empty(24) Finished taking o�, started to y to towerAtivity Tree:root..go (to tower) [urrent℄....take_off [done℄....fly_atom (to tower) [urrent℄..find (red ar) [urrent℄....loate (red ar) [urrent℄System Agenda:1. I have taken o�2. Now ying to the tower
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(25) Spotted a red ar, started traking it and suspended ying (ours beforeutteranes on System Agenda in (24) are proessed)Ativity Tree:root..go (to tower) [suspended℄....take_off [done℄....fly_atom (to tower) [suspended℄..find (red ar) [urrent℄....loate (red ar) [done℄....trak (red ar) [urrent℄System Agenda:1. I have taken o�2. Now ying to the tower [FALSE!℄3. I have found a red ar4. I have suspended ying to the tower5. Now traking the red arWithout a representation of the urrent state of the devie, thegeneration omponent would simply \read o�" the system agenda,making announements about the state of the world whih are nolonger true (in this ase, that the heliopter is urrently ying to thetower). The �ltering algorithm given above, however, requires thatthe system skip the announement that it is urrently ying to thetower { sine this statement no longer aurately represents the stateof the ativity. After hearing this utterane, the operator might bequite onfused sine on the GUI he or she ould observe a red ar andheliopter motion that appears to indiate that the heliopter is fol-lowing the ar, rather than ying to the shool.10 As suh, it beomesapparent that the Ativity Tree provides a means for the generationmanager to disard or modify reports that have been produed by thesystem. The dialogue manager an retain the modularity providedby the fat that the generation module is separate from the report-10Perhaps, rather that simply throwing away the utterane Now ying to the tower, aneven leverer generation algorithm might hange it to something like I was ying to thetower, but I've now suspended ying there. No hanges would be need to the Ativity Treeor the Report Generation Mehanism to failitate this, only to the Generation Component79



generating module, while at the same time having the ability to makesure that the reports the system utters are atually true.8.4.3 Answering Why?Due to the omplexity of some ativities (in their many sub-ativities,sub-sub-ativities, and so on) and the length of time it takes to do apartiular ativity, it may not always be immediately apparent to theoperator why the system is doing a partiular ation. The operatormay simply have forgotten that he or she gave a partiular ommand,or perhaps may not realize that the system is doing a partiular ativ-ity beause the ativity is atually a subativity of another ativity.In the WITAS system, for example, there is de�ned a relatively om-plex ativity alled �ght �re in whih the heliopter repeatedly piksup water at one loation, transports the water to a seond loationwhere a building is on �re, and drops loads of water there until the�re has been extinguished. Beause this ativity is relatively omplexand has a long duration, it's possible that the operator might want toquestion the heliopter as to why it is, say, piking up the water fromthe lake.At at least a simple level, the Ativity Tree o�ers a straightfor-ward means of answering suh why questions. In order to answer whythe devie is doing a partiular ativity, the dialogue manager anlook at the ativity's anestor nodes on the Ativity Tree and simplyreport an appropriate anestor. For example, in (26) there appearsa snapshot of the Ativity Tree as it might appear during one stageof �ghting the �re at the shool { spei�ally, the point at whih theheliopter has piked up the water and is arrying it to the shool.(26) root..fight_fire (at shool) [urrent℄....transport (water from lake to shool) [urrent℄......pikup_at_loation (water from lake) [done℄........go (to lake) [done℄..........take_off [done℄..........fly_atom (to lake) [done℄........pikup_objet (water) [done℄......deliver (water to shool) [urrent℄........go (to shool) [urrent℄..........take_off [skipped℄..........fly_atom (to shool) [urrent℄80



Given this Ativity Tree, the CSLI Dialogue Manager supportssuh queries as the following:(27) a. Why?b. Why did you pik up the water at the lake / go to the lake /take o� / pik up the water?. Why are you delivering the water to the shool / going to theshool?In order to answer eah of these questions, the dialogue managermust �rst determine whih ativity spei�ally the user is asking awhy question about. One this has been determined, it must hoosethe appropriate anestor of this ativity to report as an answer to thequestion. Most of the time, this is simply the parent of the ativityin question. There is one ase, however, in whih the parent is not anappropriate response { namely, the ase in whih a report in naturallanguage desribing the parent ativity is idential to one desribingthe hild. For instane, if the ativity being asked about is y atom,then it is inappropriate to report the y atom's parent ativity, go,beause both y atom and go are realized linguistially in the sameway (in the above Ativity Tree, both are realized as something suhas I have own to the lake). As suh, if the system were to deide thaty atom were the relevant ativity and then simply report its parent,infeliitous dialogues like the following ould our:(28) O: Why did you y to the lake?S: #Beause I was ying to the lake.whereas the `appropriate' exhange should be the following:(29) O: Why did you y to the lake?S: Beause I was piking up the water at the lake.In order to answer why questions like the ones in (27) the dialoguemanager uses the algorithm given below. Note that the input to thealgorithm is a logial form representing a why query. It is assumedthat the format of the logial form is the following:why query(AtivityMarker, AtivityDesription)where AtivityMarker is an have one of the following values:� anap: for the purely anaphori utterane of why?� urrAtivity: for utteranes referring to the urrent ativity,either Why are you Xing? or Why are you doing that?81



� omplAtivity: for utteranes referring to a ompleted ativity,either Why did you Xing or Why did you do that?and AtivityDesription has either the value of anap for utteranesthat don't refer to a spei� ativity (e.g. Why? and Why are youdoing that?), or the logial form for ommanding an ativity that anbe deomposed by the mahinery developed in setion 8.1.Algorithm: ANSWER WHY QUERYGiven: The logial form w of a why querya = find relevant ativity(w)ra = generate logial form(a)p = parent(a)while(p != null) frp = generate logial form(p)if(rp != ra) return why answer(rp)p = parent(p)g And the algorithm for find relevant ativity is as follows:Algorithm: FIND RELEVANT ACTIVITYGiven: The logial form w of a why query with AtivityMarker m andAtivityDesription dGiven: The list of salient ativities, Sif m = anap AND d = anap return first(S)foreah s in S fa = parse ommand to ativity(d)if mathes(s, (a, m)) return sgwhere the mathes prediate takes an ativity as one parameter anda desription of an ativity with its state as the seond parameterand returns true if and only if the desription and state of the seondativity are the same as the �rst.8.4.4 Answering What are your onstraints?Sine the system allows the operator to speify rather omplex setsof onstraints on the devie, it beomes immediately important forthe the operator to be able to �nd out from the system what exatlyit believes its urrent set of onstraints is. Given that the dialogueinterfae already must be apable of onverting onstraints into nat-82



ural language, answering the question What are your onstraints? isfairly simple. Currently, the dialogue manager simply reads o� all ofthe neessary and banned onstraints on the root node of the AtivityTree to produe dialogues like the following:(30) O: Always y high.S: Okay....O: Never y at low speed.S. Okay....O: What are your onstraints?S: I am supposed to always y high.S: I am never supposed to y at low speed.Granted the output is fairly simplisti. For more natural output,the Generation Component should probably aggregate these utter-anes into a single utterane. This is relatively straightforward andplanned as future work.9 Limitations and Future WorkWhile this paper identi�es major steps whih an be taken towarddesigning generi dialogue systems whih are apable of failitatingtask-oriented dialogues, it ertainly doesn't o�er a omplete, awlesssolution to the problem. There are a number of problems whih sim-ply haven't been addressed and some whih haven't been addressedompletely. In this setion, I'll disuss some of these issues and try tomention ways in whih the framework presented here might provideuseful insights or a �rst step toward solving them.9.1 Grammar Development and Speeh Reog-nitionThroughout most of this paper, the proess of �rst onverting anaousti signal representing spoken language input into text and thenparsing this text into some sort of logial form the dialogue manageran use has been largely taken for granted. Many dialogue systems,inluding the ones developed at CSLI [LGP02℄ and NASA [RHJ00℄,83



use a domain-spei� grammar to parse text input (and often bi-diretionally to produe text output). Often this grammar is ompiledinto a language model whih an automati speeh reognizer (ASR)uses as a onstraint on the utteranes it expets to hear. Other sys-tems might use orpus data or other statistial tehniques to onstraintor train their speeh reognizer. At the moment, the grammars andlanguage models used by most dialogue systems are highly domain-spei�. For example, the one used by the CSLI dialogue managerfor the WITAS system is spei� to the types of utteranes that areinvolved in ontrolling an autonomous heliopter. As suh, it wouldbe totally inapable of parsing utteranes related to tasks like drivinga ar or ontrolling a radio.The question, then, is whether or not a domain-independent gram-mar an be written whih is suitable aross a large number of onver-sational domains. It might be possible to diretly plug suh a gram-mar into many di�erent dialogue systems, or it might be neessaryto speialize it in some, relatively straightforward way, aross manyappliations. While the work presented in this paper learly doesn'tanswer the question of how suh a grammar ould be implemented, Ibelieve that it sheds some light on the proess.The framework provided here identi�es many of the ommon typesof onversations whih are likely to our as part of task-oriented dia-logues. As suh, it provides some guidane in the range of utteranesthat a general-purpose grammar would have to provide, assuming thegrammar was to be geared only toward task-oriented, pratial dia-logue systems. By identifying ommon lasses of dialogues, we providea metri by whih a general-purpose, domain-independent grammarould be measured; we ould, for instane, ount the number of do-mains in whih a spei� grammar supports the range of dialoguefailitated by the framework presented here.Moreover, the framework given here provides an expliit, domain-independent (aross task-oriented domains) semanti mehanism forrepresenting many sorts of utteranes. For instane, it provides ageneri way to semantially speify ativities { as sets of required andoptional de�nable slots { as well as onstraints over these ativities{ as logial expressions over the values of these onstraints. If wewere to design a domain-independent grammar whih also used rep-resentations ompatible with those given here, then we would havean extremely straightforward means of speializing this grammar tospei� domains: we ould, for example, de�ne mappings between84



omponents of an utterane and various slots relevant to the domainin question. Indeed, it seems relatively straightforward to imagineadding extra �elds to the reipe sript for eah ativity whih at es-sentially as sub-ategorization mappings between arguments to a verband relevant slots.9.2 More Complex ReipesThroughout this paper it has often been assumed that any reipewhih we would want to desribe ould be e�etively and easily de-sribed through the reipe sript.11 This, of ourse, is not the ase asa reipe ould, in theory, be an arbitrarily omplex set of instrutions.It does seem, however, that there are several onepts not inludedin the apabilities of the reipe sripting language whih are usefulaross a large range of task-oriented dialogues.One major issue is handling goal-oriented deomposition. In thissimplest ase, this manifests itself as a hoie between two di�erentways of aomplishing the same goal. Imagine, for instane, that youwant me to be at your house for a party at 11:00 and that I have severaldi�erent possible ways that I ould get there; for instane, I ould y,drive, walk, biyle, or skateboard there. Now imagine, further, thatyou don't are how I get there, just that I am indeed at your houseat some point around 11:00. In this ase, I might hoose any of theabove options in order to get to your house. Of ourse the situationan rapidly get more ompliated. It might be that you live too faraway for me to skateboard or walk, and that I don't have aess to asmall plane or a heliopter, so I'll have to drive or biyle to the party.Or perhaps I get on my biyle, but just as I'm leaving my house, thepeddle breaks o� and suddenly I have to drive to your house instead.What I've identi�ed here essentially is goal-oriented, rather thantask-oriented, deomposition. While the reipe sripting language out-lined in this paper allows for ativities to be deomposed into spe-i� sequenes (or simultaneous sets) of other ativities, this perhapsdoesn't quite mirror the way in whih humans atually deomposeativities. Humans are often quite exible in that if one way of a-omplishing a goal fails, they'll try a di�erent way (the broken biyle).Or if for partiular reasons they an't even try one means of ahieving11Speial thanks to the members of the Stanford Natural Language Proessing readinggroup for an interesting disussion on the issues mentioned in this setion. Any errors are,of ourse, mine. 85



a goal, they try another means instead of giving up (your house is toofar away, and I don't have my own heliopter). Moreover, they mightdefer making deisions about how to aomplish ertain goals until alater date when they have more information.It is perhaps more appropriate to say, then, that humans natu-rally deompose reipes in terms of goals for whih they already know(or an learn about, disover, or invent) reipes for means of ahiev-ing these goals. Suh deomposition is not supported by the reipesripting language at the moment, not beause it is more diÆult towrite sripts in this way, but mainly beause the mahinery involved inexeuting sripts so deomposed is more demanding. Indeed, the A-tivity Tree and the Constraint Management System are agnosti as towhether reipes are deomposed in terms of goals or other reipes { thetree simply represents planned, urrent, and past ations no matterby what mehanism they were generated, and the onstraint systemapplies reipes being instantiated for any reason. Moreover, synta-tily it would be relatively straightforward to speify goals instead ofspei� reipes whih should be intended within a reipe body. How-ever, it is exatly the proess of making the deisions regarding whihreipe to use to ahieve a spei� goal and why, that I sought to avoidin the framework provided here. Suh deisions may require ratheromplex planning and real-time exeution systems on the part of thedevie being ontrolled { a requirement I didn't wish to impose on thesystems whih are being dialogue-enabled for the moment. Instead, Ihose to fous on a wider-range of systems whih might or might nothave suh a omponent. This is not to say that suh systems shouldbe forever ignored; indeed, I believe that muh interesting useful workan be put into means of generially dialogue-enabling the features ofsuh systems. For example, dialogues about whih reipe to use andwhy may surely share ommonalities aross many devies that ouldbe aptured and added to the framework desribed here.Indeed, I believe that the framework presented in this paper ouldbe expanded in a straightforward manner to deal with goal-deompositionas opposed to ativity-level deomposition. Certainly, the AtivityTree and onstraint management systems as they exist would work�ne with suh a system. What would remain would be to imple-ment algorithms for failitating dialogues regarding whih solutionsare under onsideration and why and for atually piking a solutionto exeute. Moreover, the onstraint system would have to be ex-panded to deal with onstraints whih desribe whih reipe to hoose86



to ful�ll a partiular goal. The work presented in this paper servesas a good basis for suh expansion, and it provides a framework forfuture expansion beause many useful notions are already representedand realized omputationally. Already in plae is a semantis for goalsin whih they are expressed in terms of slots, whih are used to on-eptualize ativities; suh a semantis ould ertainly be utilized ina goal-deomposition system. In addition, the Ativity Tree ouldbe \multiplied" { that is, rather than having a single Ativity Treewhih represents that atual state of the devie, Ativity Trees whihrepresent \possible worlds" ould be reated in order to failitate dis-ussions about di�erent possibilities for how to pursue a partiulargoal. One a \possible world" is deided upon, the ativity tree rep-resenting that world ould be attahed as a subtree of the one whihrepresents the \atual" world.In the meantime, devies with suh apabilities an still be inter-faed to the existing system. At the level where suh deisions shouldbe made, reipes should simply be delared as atomi and be sentdiretly to the devie for planning. At this point, the devie has thefreedom to hoose whatever set of ations it wishes to take. If suhations will be relevant to the dialogue, then the devie is free to rep-resent these ations as ativities on the Ativity Tree, whih appearbelow what would otherwise be an atomi leaf node.9.3 Natural Language Desriptions of ReipesGiven that the system has reipes whih desribe how to aomplishertain goals, it would be natural to allow it to disuss (and evenpossibly modify) these reipes using natural language with the humanoperator. Indeed, this goal was one motivation for keeping the reipesrelatively simple in nature. There are potentially two di�erent levelsat whih a reipe might be disussed. In the �rst ase, the reipewould be disussed in purely abstrat terms, while in the seond, itwould be at least partially instantiated.The di�erene is most evident in that it would manifest itself inthe answers to the following two di�erent questions we might like toask the system:1. How do/would you patrol? / How does one patrol? / What'sinvolved in patrolling?2. How do/would you patrol between the tower and the shool?87



In the �rst ase, the response should really involve the elements of thereipe for patrolling. A suitable response might be something loseto In order to patrol, one must ontinually y to one loation, thena seond loation. In the seond ase, the situation is muh moreonrete and the answer ould be suitably more onrete. It mighttake the form of In order to patrol between the tower and the shool,I would ontinually y to the tower then to the shool.In the �rst ase, several omplexities emerge whih must be dealtwith. The �rst is atually determining preisely whih reipe the hu-man operator wants to talk about. As a �rst go, we might assumethat we would simply do a reverse lookup aording to the NL map-ping of reipes in the library; that is, we would simply searh for thereipe whose NL mapping mathes the verb being asked about. Suha reverse lookup runs into the immediate problem that there mayatually be several reipes whih map to the same verb (sine thisphenomenon is, in fat, the very reason that the NL mapping systemwas reated { please see setion 5.2.1). In this ase, a question likeHow would you patrol? may involve several possible answers (in theWITAS system), sine the verb of patrol atually maps on to multi-ple onepts.12 If suh multiple mathes were found, then the systemwould have to either deide all of them, use some sort of probabilistimeans or weighting shema to deide whih one to say, or initiate alari�ation subdialogue to try to determine whih one, spei�ally,the human operator is interested in.One the relevant reipe has been isolated, its reipe body mustthen be desribed (and perhaps, its goals, preonditions, onstraints,and so on if so desired). In order to do this, an algorithm would have tobe designed whih ould examine the reipe body sript and produereasonable natural language to desribe it. Some of this would involvenatural language onstruts to desribe loops { as the use of \ontin-uously" above illustrates. The main diÆulty whih would emerge,I believe, is when dealing with the question of how to best desribethe uninstantiated reipes using natural language. Perhaps the most12These onepts are the following:� patrolling among multiple loations� patrolling at a partiular loation� patrolling among various loations while looking for a spei� objet� patrolling at a partiular loation while looking for a spei� objet88



straightforward solution would be to assoiate some sort of phrase witheah slot type (or perhaps at a �ner grain, with eah slot de�nitionor even eah slot delaration within eah reipe) whih ould be usedto desribe it abstratly. For instane, imagine that assoiated withthe type Loation in the WITAS system was some noun phrase like aloation. Then, in order to generate the desription of an invoation ofa reipe like y, we ould simply �ll in a loation where we would usu-ally �ll in the NP orresponding to the objet in the toLoation slot,yielding something like Fly to a loation. Of ourse, suh a systemimmediately shows its limitations when onfronted with the questionabout patrolling above; suh simple replaement rules would yield ananswer similar to I would ontinually y to a loation then y to aloation. Clearly, at some point, a relatively sophistiated generationalgorithm would have to be used to avoid suh obviously bad genera-tion.We see then, that by limiting the onstruts in the reipe sriptinglanguage, we ould envision a system that ould desribe these reipesin abstrat terms using natural language. While building suh a gen-eration algorithm would learly be non-trivial, I have skethed herethe major onsiderations that would have to go into it. The next issue,then, is how to answer questions like the seond one: How do/wouldyou patrol between the tower and the shool?. In some sense, this isa muh more diÆult problem sine it involves analyzing the urrentontext. For instane, if the heliopter were urrently at the tower,then the answer given above wouldn't seem quite orret { indeed, wewould want to say that the heliopter would �rst y to the shool andthen to the tower, sine this is the order in whih it would atuallydo things, given the urrent state of the world. In this sense, thisis a muh more diÆult problem than then disussing reipes in anabstrat sense. Indeed, in order to give a reasonable answer, we arelikely to atually want to try to simulate the devie atually exeutingthe ativity, given the urrent state of the world as the start state ofthe simulator. This is the ase not only beause ertain ations might\obviously" be skipped, but also beause we want to simulate the ef-fets of the urrent onstraint set on how ertain ativities would beperformed.
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10 ConlusionsThe work presented in this paper provides evidene for the domain-independene hypothesis desribed in [ABD+01℄, repeated here:\Within the genre of pratial dialogue, the bulk ofthe omplexity in the language interpretation and dialoguemanagement is independent of the task being performed."Spei�ally, it desribes the implementation of relatively generi dialogue-management algorithms whih operate over delaratively spei�ed in-formation about a partiular intelligent agent/devie to yield a onver-sational system whih an be used by a human operator to ommandand ontrol the agent/devie, as well as partiipate in joint-ativitieswith it. Spei�ally, this is done by de�ning an interfae whih liesbetween the dialogue manager and the agent/devie whih providesa domain-independent entity for the dialogue manager to work withwhih is apable of modeling how joint-ativities work in general. Thisinterfae is then speialized to eah agent/devie by speifying a reipelibrary, whih de�nes the spei� apabilities of the agent/devie.By writing dialogue-management algorithms whih operate in termsof strutures on the Ativity Tree and onstraints in the ConstraintManagement System, the dialogue manager an be imbued with dia-logue strategies whih work in general aross a wide range of agents/devies.That is, by isolating general aspets of task-oriented dialogue, it is pos-sible to reate a dialogue system that supports many of the lasses oftask-oriented dialogues. Many issues that arise in task-oriented dia-logues were disussed in this paper, and algorithms for solving theseissues in the general ase were presented. Spei�ally, the appropriateway to model the following two issues was disussed:� How to struture, deompose, and oneptualize joint ativities(solution: Ativity Tree, Reipe Sripts)� How to model onstraints whih people are apt to impose usingnatural language (solution: Constraint Management System)I was the able to show that with these models in hand, relativelygeneri algorithms ould be introdued to failitate ommon task-oriented dialogues. In spei�, I onsidered and proposed solutionsfor the following issues:� Using the ommonsense knowledge of how ativities are deom-posed to interpret utteranes in ontext and produe meaningful90



(or deide to �lter out no-longer-relevant) utteranes.� Dialogues for dealing with onits over resoure usage� Algorithms for engaging in the dialogue games whih arise whenonstraints ome into onit with one another, or with defaults.� Strategies for onverting onstraints bak and forth between nat-ural language and �rst-order-logi� Using the struture of the Ativity Tree to answer questions likeWhy? andWhat are you doing? in order to avoid mode onfusionby learly ommuniating the state of the devieThe work presented here identi�es many of the ommon genresof onversations whih are likely to our in the pursuit of onretetasks. It proposes strategies for dealing with suh dialogues arossa wide range of tasks and task partiipants. I also identify the ur-rent limitations of the system and determine possible ways by whihthese limitations be addressed in the future by building on the urrentframework.A Adapting the Dialogue Manager toa New DomainIn this setion, I will briey desribe the tehnial details involved insupporting a new task-oriented domain for dialogue. In partiular, Iwill assume that the goal is to modify the CSLI dialogue mananger towork with a new devie or agent. Ideally, all of the work would needonly to be delarative, in the sense that the dialogue manager's Javaprogram ode shouldn't have to be modi�ed. As I'll desribe here,in pratie some of the ode must indeed be modi�ed. The hangesmade are fairly routine and straightforward, however, and it is mybelief that future work ould render them delarative in nature.The steps involved are as follows:� A new reipe sript for the devie needs to be reated and om-piled.� The devie will need to be interfaed to the reipe exeutor mod-ule.� Callbak methods desribing parallel relationships among slotswill need to be de�ned in the dialogue manager.91



� The resolution proedures for ativities in the dialogue managermay need to be modi�ed slightly to perform domain-spei� in-ferenes.� The urrent grammar will need to be adapted or rewritten todeal with the devie.� The proedures for onverting between the logial forms pro-dued by the grammar and the slots de�ned in the reipes mayneed to be modi�ed.� Databases whih supply knowledge about objets in the worldwill need to be reated.Of immediate note is that none of these steps involve modifyingthe Constraint Management System or the way in whih the AtivityTree funtions. Many of the above steps are fairly trivial, while wewill see that a few require a signi�ant amount of work.A.1 Creating and Compiling a Reipe SriptThe syntax and layout for the reipe sripting language has alreadybeen disussed in great detail in setions 5 and 6. In this setion, I willdesribe the tehnial details of how to atually `ompile' the sriptand inorporate it into the dialogue manager as a whole.Assuming we have an reipe sript named myDevie.ts, the �rststep is to `ompile' it into the �les needed by the system at runtime.This is done using the CSLI ReipeCompiler, using the following om-mand:: java sli.reipe.CSLI_ReipeCompiler myDevie.tsNote that Java version 1.3 or above should be used. This willgenerate the following �les and plae them in a subdiretory of theurrent diretory named output:1. CSLI AtivityProperties.java: de�nes the ativity proper-ties2. myDevie.rep (this �le name will atually depend on what it isspei�ed to be alled in the reipe sript, see setion 5.1.1).3. CSLI TaskMather.java: A simple lass with a hash table to doNL mapping of ommand names4. domains.el: De�nes the domain of eah slot92



All of these �les should then be opied into the following diretoryof the dialogue manager ode:CSLI HOME/sli/agents/dialogueManager/ativityModel/This diretory should be reompiled with the following ommand:d CSLI_HOME/sli/agents/v2/dialogueManager/ativityModeljava *.javaIn addition, myDevie.rep should be opied to sli/agents/v2.At this point, the dialogue manager has been \adapted" to dealwith the reipes spei� to this devie.A.2 Interfaing the Devie to the Reipe Ex-eutorThe reipe exeutor reads in the reipes, instantiates them into a-tivities, and exeutes them as needed. When it enounters an atomiativity, however, it needs to be able to send this ativity to the de-vie to atually be exeuted. Moreover, as the devie exeutes theativity, it needs to be noti�ed of the hanges in the state of theativity (for example, is it urrent, planned, suspended, and soon). This is done through the devieInterfae module, loated insli/agents/v2/devieInterfae. Here two relevant Java interfaespei�ations are de�ned: CSLI Devie and CSLI DevieListener.The �rst, CSLI Devie de�nes a set of methods that the deviemust be able to respond to. In order to interfae a devie to thedialogue manager, a Java lass whih is apable of responding to allsto these methods by sending information to the atual devie must bede�ned. This may simply be a stub, whih relays the alls to the \real"interfae to the devie through CORBA, OAA, RMI, or some otherarhiteture (this is how the CSLI system interfaes to the robotiheliopter). Alternatively, if the ontrol regime for the devie is builtin Java, then the ode ontrolling the devie may simply be modi�edto implement this interfae (this is how the CSLI system interfaesto the simulator of the roboti heliopter). The major part of theinterfae appears in �gure 5The omments in the ode desribe eah method. The methodsare in support of the following apabilities:93



Figure 5: The bulk of the CSLI Devie Interfae/*** defines the interfae that the devie must adhere to* for the SimTaskTree to interfae with it*/publi interfae CSLI_Devie {/*** add a listener to be notified of devie events*/publi void addListener(CSLI_DevieListener listener);/*** exeute an atomi ativity* �param id the id of the ativity* �param properties the properties of the ativity*/publi void exeuteAtomi(String id,CSLI_AtivityProperties properties);/*** test the value of a prediate*/publi boolean testPrediate(String prediate,ArrayList arguments);/*** should be equivalent to anel(id, true)*/publi void anel(String id);/*** anel the ativity with the given id* �param id the id of the ativity to anel* �boolean shouldSetCanelled should be true* iff the devie should now notify the* listeners that the ativity has been anelled*/publi void anel(String id, boolean shouldSetCanelled);publi void fillMonitorSlots(CSLI_AtivityProperties ap);} 94



exeuteAtomi Takes in the name and parameters of an atomiativity and exeutes it. A unique identi�er is also passed in sothat the dialogue manager has a means of ommuniating withthe devie about this spei� ativity.testPrediate In the reipe sript, it is legal to speify prediates asgoals, preonditions, and as the onditions of loops in the reipebody; this method is used by the dialogue manager to determineat runtime if these prediates should evaluate to true or false.The devie must be able to determine if a given prediate, witha given set of arguments (represented as String objets), is trueor false when this method is alled.anel Canel a spei� ativity (and optionally notify the listeners).�llMonitorSlots The monitor slots (see setion 5.2.3) must be �lledin at runtime when this method is alled. In this way, the di-alogue manager an ask the devie to reet about its urrentstate, on demand.addListener The devie needs to be able to support the typial Javanotion of having a Listener. Here, eah CSLI DevieListenerobjet whih it is passed (via the addListener method), mustbe noti�ed whenever the state of the devie hange. This will bedisussed immediately below.While the devie must be able to respond to the above methods,it must also have a means of notifying the dialogue manager when thestate of an atomi ativity has hanged (for example, from plannedto urrent). In order to do this, whenever the state of an ativityhanges, the devie must notify the CSLI DevieListener objetswhih have registered with it via the addListener method. Figure 6shows the bulk of the CSLI DevieListener interfae. As would beexpeted, the interfae is onerned mainly with ommuniating thestate of ativities to the dialogue manager.A.3 Callbak Methods for E�etive Slot LengthsAs was mentioned setions 7.4 and 7.4.1, so-alled parallel slots some-times may be useful. For example toLoation, toSpeed, toAltitude inthe WITAS system are de�ned to be parallel slots, sine the loationthat the heliopter ies to must also always be aompanied with aspeed and and altitude at whih to y. In pursuit of supporting these95



Figure 6: The bulk of the CSLI DevieListener Interfae/*** the devie should all these methods on its listeners*/publi interfae CSLI_DevieListener {/*** alled when a task is ompleted*/publi void taskCompleted(String taskID);/*** alled when a task is planned*/publi void taskPlanned(String taskID);/*** alled when a task is anelled*/publi void taskCanelled(String taskID);/*** alled when a task beomes a urrent task the uav is working* on*/publi void taskCurrent(String taskID);/*** alled when a task fails*/publi void taskFailed(String taskID);/*** alled when a request to stop tasks on the list* is made* �param taskIDs the ids of the tasks to stop*/publi void stopTasks(java.util.ArrayList taskIDs);/*** alled when a request to stop all tasks* has been made*/publi void stopAllTasks();/*** �param value if it is true, the the reipe exeutor* should be planning and exeuting reipes*/publi void setShouldPlan(boolean value);}
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parallel notions, the following allbak methods must be de�ned bythe dialogue manager for a spei� devie:int getSlotMinLengthForDefault(String slotName,CSLI_AtivityProperties ap)int getSlotMaxLengthForConstraint(String slotName,CSLI_AtivityProperties ap)Note that eah method takes a slotName and a CSLI AtivityPropertiesobjet. The �rst parameter spei�es the name of the slot in question,and the seond is essentially a list of all the slots paired with theirvalue lists. So, for example, if slotName were the String toSpeed andin ap the slot toLoation had 2 values �lled in, then both methodswould return the value 2.The dialogue manager provides default behavior for eah of thesemethods in the CSLI AtivityBase lass in the following pakage:sli.agents.v2.dialogueManager.ativityModel.But it should be overridden in the ase of parallel slots in the sub-lass, CSLI Task whih is used by the dialogue manager.A.4 Resolution Proedures for AtivitiesThe dialogue manager needs to know when a partiular partially spe-i�ed ativity should be set to the state resolved (and hene thensubjeted to the algorithms whih attempt to use onstraints and de-faults to fully instantiate it). In general, this means that all of therequired de�nable slots in the ativity must have a value (indeed, eahrequired de�nable slot must at least ontain a list of values equal inlength to its delared minimum length). Usually these values omediretly from user utteranes, however sometimes they an be �lled inthrough inferenes. For example, in the WITAS system, if the heli-opter is told to deliver medial supplies, it needs to know where themedial supplies are in order to pik them up. If there is only one setof medial supplies, and it is known to be at Spring�eld Hospital, thenthe system should infer that it should y to the Spring�eld Hospitalto pik them up, without having to ask for this required de�nable slotto be �lled in by the user. This sort of inferene, in general, is do-main spei�. As suh, in the CSLI TaskHelper, a allbak method is97



de�ned alled tryResolving whih takes a partially spei�ed ativityand tries to make inferenes to �ll in its un�lled slot values. If thenew devie requires any suh inferenes, then this method should berede�ned in CSLI TaskHelper and the dialogue manager should bereompiled.A.5 Modifying the Grammar and the Conver-sion RoutinesThis topi has already been overed in setion 9.1. SuÆe it to saythat the grammar must be adapted to a new domain. It would bedesirable if the there were a domain-independent grammar that ouldbe speialized for eah new devie, but this has yet to be developed.A.6 Creating New DatabasesCurrently, the CSLI Dialogue manager urrently requires two databasesto represent real objets in the world. They are written using Knowl-edge Interhange Format, and are searhed using Stanford's Java The-orem Prover [jtp℄. Logial axioms are used to de�ne hierarhial \isa"relations (for example, the base is a building whih is a geographialobjet). The �rst database de�nes the stati objets in the world,while the seond is used to de�ne the dynami objets. In the WITASsystem, this is a distintion between things that appear on maps { likeroads and buildings { and things that the heliopter sees and reportsin real time { like ars and truks. Noun phrases are then resolvedand bound to spei� objets that appear in these databases when thedialogue manager seeks to determine what a given noun phrase refersto. A new system may use the existing struture of this database, butneeds to de�ne a new set of stati objets whih are salient to thedevie. For instane, a robot for the home might need to know aboutthe various rooms in the house.B An Example Reipe SriptThe following is the reipe sript used in the WITAS system for in-terfaing a roboti heliopter to the dialogue system.devie pakage sli.agents.v2.simulator;98



dialogue pakage sli.agents.v2.dialogueManager.ativityModel;//dialogue pakage sli.reipe; //temp for testingrepfile "witas.rep";//sets valid atoms for slot valuesTypes{ Loation :: ["t1", "s1", "b4", "b6", "b7", "b8", "b9", "b10","ts1", "b2", "b3", "b5", "b11", "h3", "h4","h2", "h5", "h7", "r1", "r2", "r3", "r4","r5", "r6", "r7", "r8", "r9", "r10", "r11","r12", "r13", "r14", "r15", "r16", "r17","r18", "r19", "r20", "r21", "w1", "w2", "w3","f1", "m1", "h6", "p1", "rr1","waypoint1", "waypoint2", "waypoint3","waypoint4", "waypoint5", "waypoint6","waypoint7", "waypoint8", "waypoint9","waypoint10"℄;Speed :: ["high", "medium", "low", "zero"℄;Altitude :: ["high", "medium", "low", "zero"℄;Objet :: [℄; //[℄ means it's not involved in onstraintsMoveableObjet :: [℄;}DefinableSlots{ Loation toLoation:1-3;Loation fromLoation:1-3 = "null";MoveableObjet arryObjet:1;Speed toSpeed:1-3 = "medium";Altitude toAltitude:1-3 = "medium";Speed fromSpeed:1-3 = "medium";Altitude fromAltitude:1-3 = "medium";Objet searhItem:1;Objet followItem:1;99



}MonitorSlots {Loation urLoation:1;Speed urSpeed:1;Altitude urAltitude:1;Objet grippedObjet:1;//heliopter an only see a single item at a timeObjet notiedItem:1;}Resoures {uav;gripper;amera;}abstrat taskdef<move,"move">{ DefinableSlots {required toLoation;optional fromLoation;optional toSpeed;}MonitorSlots {urLoation;urSpeed;}Resoures {uav;}Banned {toSpeed == "zero";100



}}taskdef<go,"go"> extends move{ DefinableSlots {optional toAltitude;}MonitorSlots {urAltitude;}Banned {toAltitude == "zero";}NLSlots {default: toLoation;urrent: toLoation, toAltitude, toSpeed;}Body { intend take_off(toAltitude = THIS.toAltitude);foreah toLoation t, toAltitude a, toSpeed s {intend fly_atom(toLoation = t,toAltitude=a, toSpeed=s);}}}taskdef<fly_atom,"go"> extends move{ DefinableSlots {optional toAltitude;}MonitorSlots {urAltitude;} 101



PreConditions {urAltitude[0℄ != "zero";}Goals { urLoation[0℄ == toLoation[0℄;}NLSlots {default: toLoation;urrent: toLoation, toSpeed, toAltitude;}}taskdef<take_off,"take_off">{ DefinableSlots {optional toAltitude;}MonitorSlots {urAltitude;}Resoures {uav;}Goals { urAltitude[0℄ != "zero";}NLSlots {default: ;}}
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taskdef<land,"land">{ DefinableSlots {required toLoation;}MonitorSlots {urLoation;}Resoures {uav;}Goals { urLoation[0℄ == toLoation[0℄;urAltitude[0℄ == "zero";}NLSlots {default: toLoation;}Body { intend go(toLoation = THIS.toLoation);intend land_atom();}}taskdef<land_atom,"land">{ DefinableSlots { }MonitorSlots {urAltitude;}Resoures {uav; 103



}PreConditions {urAltitude[0℄ != "zero";}Goals { urAltitude[0℄ == "zero";}NLSlots {default: ;}}taskdef<patrol_between_searh,"patrol">{ DefinableSlots {required toLoation;required searhItem;optional toAltitude;optional toSpeed;}MonitorSlots {urLoation;urAltitude;urSpeed;}Resouresuav;}PreConditions} 104



Goals refers_to(searhItem[0℄, notiedItem[0℄);}NLSlots default: searhItem;urrent: searhItem, toLoation, toAltitude, toSpeed;}Body intend patrol_between(toLoation = THIS.toLoation,toAltitude=THIS.toAltitude,toSpeed = THIS.toSpeed) noblok;intend find(searhItem = THIS.searhItem);}}taskdef<find,"find"> {DefinableSlotsrequired searhItem;}MonitorSlotsnotiedItem;}PreConditions}Goals notiedItem[0℄ == searhItem[0℄;105



}NLSlots default: searhItem;}Body{ do {intend loate(searhItem = THIS.searhItem);intend trak(followItem = THIS.notiedItem) t noblok;intend identify(searhItem = THIS.searhItem);stop t;} while(not_refers_to(searhItem, notiedItem));intend follow(followItem = THIS.notiedItem);}}taskdef<loate,"find"> {DefinableSlots {required searhItem;}MonitorSlotsnotiedItem;}NLSlots default: searhItem;}} 106



taskdef<trak,"trak"> {DefinableSlots {required followItem;}MonitorSlotsnotiedItem;}Resouresuav;}PreConditions}Goals}NLSlots default: followItem;}}taskdef<follow,"follow"> {DefinableSlots {required followItem;} 107



MonitorSlotsnotiedItem;}Resouresuav;}PreConditions}Goals}NLSlots default: followItem;}}//should spawn a dialogue at: "Is notiedItem == item"taskdef<identify,"identify"> USER {DefinableSlots {required searhItem;}MonitorSlotsnotiedItem;} 108



PreConditionsnotiedItem[0℄ != null;}Goals{ }NLSlots default: searhItem;}}taskdef<patrol_between,"patrol"> {DefinableSlots {required toLoation;optional toAltitude;optional toSpeed;}MonitorSlots {urLoation;urAltitude;urSpeed;}Resoures {uav;}NLSlots default: toLoation;urrent: toAltitude, toSpeed;}Body 109



{ repeat {foreah toLoation p, toAltitude a, toSpeed s {intend go(toLoation = p,toAltitude=a, toSpeed=s);}}}}taskdef<patrol,"patrol"> {DefinableSlots {required toLoation;optional toAltitude;optional toSpeed;}MonitorSlots {urLoation;urAltitude;urSpeed;}Resoures {uav;}NLSlots {default: toLoation;urrent: toLoation, toSpeed, toAltitude;}Body{ intend go(toLoation = THIS.toLoation,toAltitude=THIS.toAltitude,toSpeed=THIS.toSpeed);intend patrol_atom(toLoation = THIS.toLoation,toAltitude=THIS.toAltitude,toSpeed=THIS.toSpeed);110



}}taskdef<patrol_atom,"patrol"> {DefinableSlots {required toLoation;optional toAltitude;optional toSpeed;}MonitorSlots {urLoation;urAltitude;urSpeed;}Resoures {uav;}NLSlots {default: toLoation;urrent: toLoation, toAltitude, toSpeed;}}taskdef<patrol_searh,"patrol"> {DefinableSlots {required toLoation;required searhItem;optional toAltitude;optional toSpeed;}MonitorSlots {urLoation;111



urAltitude;urSpeed;notiedItem;}Resoures {uav;}NLSlots {default: toLoation, searhItem;urrent: toLoation, searhItem, toAltitude, toSpeed;onflits: searhItem;}Body{ intend patrol(toLoation = THIS.toLoation,toAltitude=THIS.toAltitude,toSpeed = THIS.toSpeed) noblok;intend find(searhItem = THIS.searhItem);}}taskdef<pik_up_objet,"pik_up"> {DefinableSlots {required arryObjet;}MonitorSlots {grippedObjet;}Resoures {gripper;} 112



PreConditions {grippedObjet[0℄ == null;}Goals { sameid(grippedObjet[0℄, arryObjet[0℄);}NLSlots {default: arryObjet;}}taskdef<pik_up,"pik_up"> extends go{ DefinableSlots {required arryObjet;}MonitorSlots {grippedObjet;}Resoures {gripper;}PreConditions {grippedObjet[0℄ == null;}Goals { sameid(grippedObjet[0℄, arryObjet[0℄);}NLSlots { 113



default: arryObjet, toLoation;onflits: arryObjet;}Body{ intend go(toLoation = THIS.toLoation);intend pik_up_objet(arryObjet = THIS.arryObjet);}}taskdef<drop_objet,"drop"> {DefinableSlots {required arryObjet;}MonitorSlots {grippedObjet;}Resoures {gripper;}PreConditions {sameid(grippedObjet[0℄, arryObjet[0℄);}Goals { grippedObjet[0℄ == null;}Banned {toAltitude == "medium";toAltitude == "high";} 114



NLSlots {default: arryObjet;}
}taskdef<deliver,"deliver"> extends go {DefinableSlots {required arryObjet;}MonitorSlots {grippedObjet;}Resoures {gripper;}PreConditions {sameid(grippedObjet[0℄, arryObjet[0℄);}Goals { grippedObjet[0℄ == null;at(arryObjet[0℄, toLoation[0℄);}Banned {toAltitude == "medium";toAltitude == "high";}NLSlots { 115



default: arryObjet, toLoation;urrent: arryObjet, toLoation, toSpeed, toAltitude;}Body{ intend go(toLoation = THIS.toLoation,toAltitude = THIS.toAltitude,toSpeed=THIS.toSpeed);intend drop_objet(arryObjet = THIS.arryObjet);}}taskdef<transport,"transport"> extends pik_up{ //toSlots and arrayObjet are from pik_upDefinableSlots {required fromLoation;optional fromSpeed;optional fromAltitude;}MonitorSlots { }Resoures {gripper;}Goals { at(arryObjet[0℄, toLoation[0℄);}Banned {toAltitude == "medium";toAltitude == "high";}NLSlots { 116



default: arryObjet, toLoation;urrent: fromLoation, toLoation, arryObjet,toSpeed, toAltitude;}Body{ foreah fromLoation f, fromSpeed s, fromAltitude a {intend pik_up(toLoation = f,fromSpeed = s,fromAltitude = a,arryObjet = THIS.arryObjet);}foreah toLoation t, toSpeed s, toAltitude a {intend deliver(toLoation = t, toSpeed = s,toAltitude = a,arryObjet = THIS.arryObjet);}}}taskdef<fight_fire,"fight_fire"> extends transport{ //all from superDefinableSlots { }/all from superMonitorSlots { }Resoures {uav;gripper;}Banned {toAltitude == "medium";toAltitude == "high";} 117



NLSlots {default: toLoation;}Body{ do {intend transport(fromLoation = THIS.fromLoation,toLoation = THIS.toLoation,arryObjet = THIS.arryObjet,toSpeed = THIS.toSpeed,toAltitude = THIS.toAltitude,fromSpeed = THIS.fromSpeed,fromAltitude = THIS.fromAltitude);} while(still_fire(toLoation));}}
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